scholarly journals Knockdown of versican V1 induces a severe inflammatory response in LPS-induced acute lung injury via the TLR2-NF-κB signaling pathway in C57BL/6J mice

2016 ◽  
Vol 13 (6) ◽  
pp. 5005-5012 ◽  
Author(s):  
LULU XU ◽  
TAO XUE ◽  
JING ZHANG ◽  
JIEMING QU
2020 ◽  
Vol 98 (8) ◽  
pp. 522-530
Author(s):  
Yinshan Wu ◽  
Weiliang Jiang ◽  
Zhuhua Lu ◽  
Wei Su ◽  
Nan Liu ◽  
...  

Acute lung injury (ALI), a disease with a high mortality rate, is a noncardiogenic pulmonary inflammatory response and characterized by damage to the pulmonary system. In this study, we explored the mechanism of the occurrence and development of ALI. It was firstly found that miR-138-5p could inhibit the expression of sirtuin1 (SIRT1), and we further demonstrated that miR-138-5p targets directly SIRT1 through the luciferase assay, while the latter negatively regulated the expression of NF-κB. A549 cells were treated with lipopolysaccharide in vitro to simulate ALI cells and induce ALI in the model mice. The results showed that inhibiting the expression of miR-138-5p could effectively increase the viability of damaged cells, promote cell proliferation, reduce apoptosis, inhibit the inflammatory response, reduce oxidative stress, and then relieve ALI symptoms. Collectively, our results suggested that miR-138-5p can inhibit SIRT1 expression and indirectly activate the NF-κB signaling pathway, thus regulating the development of ALI.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lin Zhang ◽  
Lukun Yang ◽  
Xiaowei Xie ◽  
Hongyue Zheng ◽  
Hangsheng Zheng ◽  
...  

Baicalin (BA) magnesium salt (BA-Mg) is a good water-soluble ingredient extracted from Scutellaria baicalensis Georgi, a commonly used traditional Chinese medicine. This study is aimed at investigating whether BA-Mg could exert a better protective effect on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and illuminate the underlying mechanisms in vivo and in vitro. Mice were intraperitoneally administrated with equimolar BA-Mg, BA, and MgSO4 before LPS inducing ALI. Lung tissues and bronchoalveolar lavage fluid were collected for lung wet/dry ratio, histological examinations, cell counts, and biochemical analyses at 48 h post-LPS exposure. Meanwhile, the protein expressions of TLR4/NF-κB signaling pathway and proinflammatory cytokines in lung tissues and lung bronchial epithelial cells (BEAS-2B) were detected. The results showed BA-Mg pronouncedly ameliorated LPS-induced inflammatory response and histopathological damages, elevated antioxidant enzyme activity (SOD), and downregulated myeloperoxidase (MPO) and malonaldehyde (MDA) levels through the inhibition of TLR4/NF-κB signaling pathway activation. Moreover, the effect of BA-Mg was significantly better than that of BA and MgSO4 in ameliorating symptoms. Overall, BA-Mg can effectively relieve inflammatory response and oxidative stress triggered by LPS, indicating it may be a potential therapeutic candidate for treating ALI.


2019 ◽  
Vol 18 (2) ◽  
pp. 176-182
Author(s):  
Chen Weiyan ◽  
Deng Wujian ◽  
Chen Songwei

Acute lung injury is a clinical syndrome consisting of a wide range of acute hypoxemic respiratory failure disorders. Sepsis is a serious complication caused by an excessive immune response to pathogen-induced infections, which has become a major predisposing factor for acute lung injury. Taxifolin is a natural flavonoid that shows diverse therapeutic benefits in inflammation- and oxidative stress-related diseases. In this study, we investigated the role of taxifolin in a mouse model of cecal ligation and puncture-induced sepsis. Cecal ligation and puncture-operated mice presented damaged alveolar structures, thickened alveolar walls, edematous septa, and hemorrhage compared to sham-treated controls. Cecal ligation and puncture mice also showed increased wet-to-dry (W/D) lung weight ratio and elevated total protein concentration and lactate dehydrogenase level in bronchoalveolar lavage fluid. Taxifolin treatment protected animals against sepsis-induced pulmonary damage and edema. Septic mice presented compromised antioxidant capacity, whereas the administration of taxifolin prior to cecal ligation and puncture surgery decreased malondialdehyde concentration and enhanced the levels of reduced glutathione and superoxide dismutase in mice with sepsis-induced acute lung injury. Moreover, cecal ligation and puncture-operated mice showed markedly higher levels of proinflammatory cytokines relative to sham-operated group, while taxifolin treatment effectively mitigated sepsis-induced inflammation in mouse lungs. Further investigation revealed that taxifolin suppressed the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in cecal ligation and puncture-challenged mice by regulating the phosphorylation of p65 and IκBα. In conclusion, our study showed that taxifolin alleviated sepsis-induced acute lung injury via the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, suggesting the therapeutic potential of taxifolin in the treatment sepsis-induced acute lung injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mian Wang ◽  
Hua Zhong ◽  
Xian Zhang ◽  
Xin Huang ◽  
Jing Wang ◽  
...  

AbstractAcute lung injury (ALI), which could be induced by multiple factors such as lipopolysaccharide (LPS), refer to clinical symptoms of acute respiratory failure, commonly with high morbidity and mortality. Reportedly, active ingredients from green tea have anti-inflammatory and anticancer properties, including epigallocatechin-3-gallate (EGCG). In the present study, protein kinase C alpha (PRKCA) is involved in EGCG protection against LPS-induced inflammation and ALI. EGCG treatment attenuated LPS-stimulated ALI in mice as manifested as improved lung injury scores, decreased total cell amounts, neutrophil amounts and macrophage amounts, inhibited the activity of MPO, decreased wet-to-dry weight ratio of lung tissues, and inhibited release of inflammatory cytokines TNF-α, IL-1β, and IL-6. PRKCA mRNA and protein expression showed to be dramatically decreased by LPS treatment while reversed by EGCG treatment. Within LPS-stimulated ALI mice, PRKCA silencing further aggravated, while PRKCA overexpression attenuated LPS-stimulated inflammation and ALI through MAPK signaling pathway. PRKCA silencing attenuated EGCG protection. Within LPS-induced RAW 264.7 macrophages, EGCG could induce PRKCA expression. Single EGCG treatment or Lv-PRKCA infection attenuated LPS-induced increases in inflammatory factors; PRKCA silencing could reverse the suppressive effects of EGCG upon LPS-stimulated inflammatory factor release. In conclusion, EGCG pretreatment inhibits LPS-induced ALI in mice. The protective mechanism might be associated with the inhibitory effects of PRKCA on proinflammatory cytokine release via macrophages and MAPK signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background Acute lung injury (ALI) is a pulmonary disorder that leads to acute respiration failure and thereby results in a high mortality worldwide. Increasing studies have indicated that toll-like receptor 4 (TLR4) is a promoter in ALI, and we aimed to explore the underlying upstream mechanism of TLR4 in ALI. Methods We used lipopolysaccharide (LPS) to induce an acute inflammatory response in vitro model and a murine mouse model. A wide range of experiments including reverse transcription quantitative polymerase chain reaction, western blot, enzyme linked immunosorbent assay, flow cytometry, hematoxylin–eosin staining, RNA immunoprecipitation, luciferase activity and caspase-3 activity detection assays were conducted to figure out the expression status, specific role and potential upstream mechanism of TLR4 in ALI. Result TLR4 expression was upregulated in ALI mice and LPS-treated primary bronchial/tracheal epithelial cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to results of luciferase reporter assay. In addition, miR-26a-5p overexpression decreased the contents of proinflammatory factors and inhibited cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI by regulating TLR4. Afterwards, OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was identified to bind with miR-26a-5p. Functionally, OIP5-AS1 upregulation promoted the inflammation and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on cell inflammatory response and apoptosis. Conclusion OIP5-AS1 promotes ALI by regulating the miR-26a-5p/TLR4 axis in ALI mice and LPS-treated cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


2020 ◽  
Author(s):  
Hongxia Mei ◽  
Ying Tao ◽  
Tianhao Zhang ◽  
Feng Qi

Abstract Background: Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are critical life-threatening syndromes characterized by the infiltration of a large number of neutrophils that lead to an excessive inflammatory response. Emodin (Emo) is a naturally occurring anthraquinone derivative and an active ingredient of Chinese medicine. It is believed to have anti-inflammatory effects. In this study, we examined the impact of Emo on the pulmonary inflammatory response and the neutrophil function in a rat model of lipopolysaccharide (LPS)-induced ALI.Results: Treatment with Emo protected rat against LPS-induced ALI. Compared to untreated rat, Emo-treated rat exhibited significantly ameliorated lung pathological changes and decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). However, Emo has no protective effect on the rat model of acute lung injury with neutrophil deficiency. In addition, treatment with Emo enhanced the bactericidal capacity of LPS-induced neutrophils via the up-regulation of the ability of neutrophils to phagocytize bacteria and generate neutrophil extracellular traps (NETs). Emo also downregulated the neutrophil respiratory burst and the expression of reactive oxygen species (ROS) in LPS-stimulated neutrophils, alleviating the damage of neutrophils to surrounding tissues. Finally, Emo can accelerate the resolution of inflammation by promoting apoptosis of neutrophils. Conclusion: Our results provide the evidence that Emo could ameliorates LPS-induced ALI via its anti-inflammatory action by modulating the function of neutrophils. Emo may be a promising preventive and therapeutic agent in the treatment of ALI.


2021 ◽  
Author(s):  
Liang Qiao ◽  
Rongxia Li ◽  
Shangang Hu ◽  
Yu Liu ◽  
Hongqiang Liu ◽  
...  

Abstract Objective Previously, the protective effect of microRNA (miR)-145-5p has been discovered in acute lung injury (ALI). Thus, this study attempts to further discuss the mechanism of miR-145-5p in ALI through the downstream E26 transformation-specific proto-oncogene 2 (ETS2)/transforming growth factor β1 (TGF-β1)/Smad pathway. Methods A lipopolysaccharide (LPS)-induced rat ALI model was established. Recombinant adenovirus miR-145-5p and/or ETS2 overexpression plasmid was administrated into rats. Afterwards, pathological damage in the lung tissue, wet/dry (W/D) ratio, apoptosis and contents of serum inflammatory factors were observed. miR-145-5p, ETS2, TGF-β1, Smad2/3, phosphorylated Smad2/3 levels were measured in rats. Results miR-145-5p was down-regulated, ETS2 was up-regulated and TGF-β1/Smad pathway was activated in LPS-suffered rats. Overexpression of miR-145-5p inactivated the TGF-β1/Smad pathway and attenuated ALI, as reflected by relived pathological damage, and decreased W/D ratio, apoptosis and inflammatory response. Oppositely, loss of miR-145-5p or enhancement of ETS2 worsened ALI and activated the TGF-β1/Smad pathway. Moreover, elevation of ETS2 decreased miR-145-5p-mediated protection against ALI. Conclusion Evidently, miR-145-5p negatively regulates ETS2 expression and inactivates TGF-β1/Smad pathway to ameliorate ALI in rats.


Sign in / Sign up

Export Citation Format

Share Document