scholarly journals A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas

2016 ◽  
Vol 37 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Stephen N. Ponnampalam ◽  
Nor Rizan Kamaluddin ◽  
Zubaidah Zakaria ◽  
Vickneswaran Matheneswaran ◽  
Dharmendra Ganesan ◽  
...  
2019 ◽  
Author(s):  
Yanyan Tang ◽  
Ping Zhang

Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumor in digestive system. CircRNAs involve in lots of biological processes through interacting with miRNAs and their targeted mRNA. We obtained the circRNA gene expression profiles from Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) between PDAC samples and paracancerous tissues. Bioinformatics analyses, including GO analysis, KEGG pathway analysis and PPI network analysis, were conducted for further investigation. We also constructed circRNA‑microRNA-mRNA co-expression network. A total 291 differentially expressed circRNAs were screened out. The GO enrichment analysis revealed that up-regulated DEGs were mainly involved metabolic process, biological regulation, and gene expression, and down-regulated DEGs were involved in cell communication, single-organism process, and signal transduction. The KEGG pathway analysis, the upregulated circRNAs were enriched cGMP-PKG signaling pathway, and HTLV-I infection, while the downregulated circRNAs were enriched in protein processing in endoplasmic reticulum, insulin signaling pathway, regulation of actin cytoskeleton, etc. Four genes were identified from PPI network as both hub genes and module genes, and their circRNA‑miRNA-mRNA regulatory network also be constructed. Our study indicated possible involvement of dysregulated circRNAs in the development of PDAC and promoted our understanding of the underlying molecular mechanisms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Cinzia Cocola ◽  
Valerio Magnaghi ◽  
Edoardo Abeni ◽  
Paride Pelucchi ◽  
Valentina Martino ◽  
...  

Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8670
Author(s):  
Zhendong Liu ◽  
Ruotian Zhang ◽  
Zhenying Sun ◽  
Jiawei Yao ◽  
Penglei Yao ◽  
...  

Background Medulloblastoma (MB) is the most common intracranial malignant tumor in children. The genes and pathways involved in the pathogenesis of MB are relatively unknown. We aimed to identify potential biomarkers and small-molecule drugs for MB. Methods Gene expression profile data sets were obtained from the Gene Expression Omnibus (GEO) database and the differentially expressed genes (DEGs) were identified using the Limma package in R. Functional annotation, and cell signaling pathway analysis of DEGs was carried out using DAVID and Kobas. A protein-protein interaction network was generated using STRING. Potential small-molecule drugs were identified using CMap. Result We identified 104 DEGs (29 upregulated; 75 downregulated). Gene ontology analysis showed enrichment in the mitotic cell cycle, cell cycle, spindle, and DNA binding. Cell signaling pathway analysis identified cell cycle, HIF-1 signaling pathway, and phospholipase D signaling pathway as key pathways. SYN1, CNTN2, FAIM2, MT3, and SH3GL2 were the prominent hub genes and their expression level were verified by RT-qPCR. Vorinostat, resveratrol, trichostatin A, pyrvinium, and prochlorperazine were identified as potential drugs for MB. The five hub genes may be targets for diagnosis and treatment of MB, and the small-molecule compounds are promising drugs for effective treatment of MB. Conclusion In this study we obtained five hub genes of MB, SYN1, CNTN2, FAIM2, MT3, and SH3GL2 were confirmed as hub genes. Meanwhile, Vorinostat, resveratrol, trichostatin A, pyrvinium, and prochlorperazine were identified as potential drugs for MB.


2021 ◽  
Author(s):  
Angélica Rangel-López ◽  
Oscar Pérez-González ◽  
Sergio Juárez-Méndez ◽  
Ricardo López-Romero ◽  
Minerva Mata-Rocha ◽  
...  

Abstract End-stage renal disease (ESRD) patients have an elevated risk of cardiovascular (CV) complications including acute myocardial infarction (AMI); endothelial dysfunction and accumulation of uremic toxins have been associated with such CV-events. To explore which molecular pathways are involved in this CV-complication and the effects of the uremic serum on gene expression, an endothelial dysfunction model was studied through microarrays and pathway analysis. mRNA was isolated of human coronary arterial endothelial cells (HCAEC) primary cultures supplemented with 20% uremic serum from two groups of patients, USI: ESRD-patients; UCI: ESRD-AMI-patients. Affymetrix GeneChip® microarray and the LIMMA-package (Linear Models for Microarray Data) of the Bioconductor sofware17 was implemented to identify relevant DEGs between the two groups of uremic patients. Protein-protein interaction networks and pathway analysis were made to analyze the interaction and expression tendency of differentially expressed genes. 100 differentially expressed genes were identified from two data sets triggered by uremic state using bioinformatics, from 16,607. After in a new cohort, 30 genes were overexpressed in UCI group, which we identified 500 ontological genetic terms and one KEGG-pathway with p < 0.05. The metabolic pathway significantly represented was the MAPK signaling pathway. Network analysis showed six genes (PTGS2, SELE, ICAM1, HMOX1, EGR1, and TLR2) that represent potential markers for ESRD with AMI, as an approximation to their underlying mechanisms. The results obtained suggest that uremic toxins in patients with ESRD can alter HCAEC and modify the gene expression profile, which could have an impact on the development of cardiovascular complications in these patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1482
Author(s):  
Stefanie Krassnig ◽  
Christina Wohlrab ◽  
Nicole Golob-Schwarzl ◽  
Andrea Raicht ◽  
Christoph Schatz ◽  
...  

Glioblastoma (GBM) is an utterly devastating cerebral neoplasm and current therapies only marginally improve patients’ overall survival (OS). The PI3K/AKT/mTOR pathway participates in gliomagenesis through regulation of cell growth and proliferation. Since it is an upstream regulator of the rate-limiting translation initiation step of protein synthesis, controlled by eukaryotic initiation factors (eIFs), we aimed for a profound basic characterization of 17 eIFs to identify potential novel therapeutic targets for gliomas. Therefore, we retrospectively analyzed expressions of mTOR-related proteins and eIFs in human astrocytoma samples (WHO grades I–IV) and compared them to non-neoplastic cortical control brain tissue (CCBT) using immunoblot analyses and immunohistochemistry. We examined mRNA expression using qRT-PCR and additionally performed in silico analyses to observe the influence of eIFs on patients’ survival. Protein and mRNA expressions of eIF3B, eIF3I, eIF4A1, eIF4H, eIF5 and eIF6 were significantly increased in high grade gliomas compared to CCBT and partially in low grade gliomas. However, short OS was only associated with high eIF3I gene expression in low grade gliomas, but not in GBM. In GBM, high eIF4H gene expression significantly correlated with shorter patient survival. In conclusion, we identified eIF3I and eIF4H as the most promising targets for future therapy for glioma patients.


2020 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
Nada M.K. Mabrouk ◽  
Dalal M. Elkaffash ◽  
Mona Abdel-Hadi ◽  
Salah-ElDin Abdelmoneim ◽  
Sameh Saad ElDeen ◽  
...  

Background: Molecular targeted drugs are the first line of treatment of advanced hepatocellular carcinoma (HCC) due to its chemo- and radioresistant nature. HCC has several well-documented etiologic factors that drive hepatocarcinogenesis through different molecular pathways. Currently, hepatitis C virus (HCV) is a leading cause of HCC. Therefore, we included a unified cohort of HCV genotype 4-related HCCs to study the expression levels of genes involved in the insulin-like growth factor 1 receptor (IGF1R) pathway, which is known to be involved in all aspects of cancer growth and progression. Aim: Determine the gene expression patterns of IGF1R pathway genes in a cohort of Egyptian HCV-related HCCs. Correlate them with different patient/tumor characteristics. Determine the activity status of involved pathways. Methods: Total ribonucleic acid (RNA) was extracted from 32 formalin-fixed paraffin-embedded tissues of human HCV-related HCCs and 6 healthy liver donors as controls. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) using RT2 Profiler PCR Array for Human Insulin Signaling Pathway was done to determine significantly up- and downregulated genes with identification of most frequently coregulated genes, followed by correlation of gene expression with different patient/tumor characteristics. Finally, canonical pathway analysis was performed using the Ingenuity Pathway Analysis software. Results: Six genes – AEBP1, AKT2, C-FOS, PIK3R1, PRKCI, SHC1 – were significantly overexpressed. Thirteen genes – ADRB3, CEBPA, DUSP14, ERCC1, FRS3, IGF2, INS, IRS1, JUN, MTOR, PIK3R2, PPP1CA, RPS6KA1 – were significantly underexpressed. Several differentially expressed genes were related to different tumor/patient characteristics. Nitric oxide and reactive oxygen species production pathway was significantly activated in the present cohort, while the growth hormone signaling pathway was inactive. Conclusions: The gene expression patterns identified in this study may serve as possible therapeutic targets in HCV-related HCCs. The most frequently coregulated genes may serve to guide combined molecular targeted therapies. The IGF1R pathway showed evidence of inactivity in the present cohort of HCV-related HCCs, so targeting this pathway in therapy may not be effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Yujie Shen ◽  
Shikun Dong ◽  
Jinhui Liu ◽  
Liqing Zhang ◽  
Jiacheng Zhang ◽  
...  

Background. The molecular mechanisms and genetic markers of thyroid cancer are unclear. In this study, we used bioinformatics to screen for key genes and pathways associated with thyroid cancer development and to reveal its potential molecular mechanisms. Methods. The GSE3467, GSE3678, GSE33630, and GSE53157 expression profiles downloaded from the Gene Expression Omnibus database (GEO) contained a total of 164 tissue samples (64 normal thyroid tissue samples and 100 thyroid cancer samples). The four datasets were integrated and analyzed by the RobustRankAggreg (RRA) method to obtain differentially expressed genes (DEGs). Using these DEGs, we performed gene ontology (GO) functional annotation, pathway analysis, protein-protein interaction (PPI) analysis and survival analysis. Then, CMap was used to identify the candidate small molecules that might reverse thyroid cancer gene expression. Results. By integrating the four datasets, 330 DEGs, including 154 upregulated and 176 downregulated genes, were identified. GO analysis showed that the upregulated genes were mainly involved in extracellular region, extracellular exosome, and heparin binding. The downregulated genes were mainly concentrated in thyroid hormone generation and proteinaceous extracellular matrix. Pathway analysis showed that the upregulated DEGs were mainly attached to ECM-receptor interaction, p53 signaling pathway, and TGF-beta signaling pathway. Downregulation of DEGs was mainly involved in tyrosine metabolism, mineral absorption, and thyroxine biosynthesis. Among the top 30 hub genes obtained in PPI network, the expression levels of FN1, NMU, CHRDL1, GNAI1, ITGA2, GNA14 and AVPR1A were associated with the prognosis of thyroid cancer. Finally, four small molecules that could reverse the gene expression induced by thyroid cancer, namely ikarugamycin, adrenosterone, hexamethonium bromide and clofazimine, were obtained in the CMap database. Conclusion. The identification of the key genes and pathways enhances the understanding of the molecular mechanisms for thyroid cancer. In addition, these key genes may be potential therapeutic targets and biomarkers for the treatment of thyroid cancer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shuzhi Ma ◽  
Zhen Guo ◽  
Bo Wang ◽  
Min Yang ◽  
Xuelian Yuan ◽  
...  

Background: Recurrence is still a major obstacle to the successful treatment of gliomas. Understanding the underlying mechanisms of recurrence may help for developing new drugs to combat gliomas recurrence. This study provides a strategy to discover new drugs for recurrent gliomas based on drug perturbation induced gene expression changes.Methods: The RNA-seq data of 511 low grade gliomas primary tumor samples (LGG-P), 18 low grade gliomas recurrent tumor samples (LGG-R), 155 glioblastoma multiforme primary tumor samples (GBM-P), and 13 glioblastoma multiforme recurrent tumor samples (GBM-R) were downloaded from TCGA database. DESeq2, key driver analysis and weighted gene correlation network analysis (WGCNA) were conducted to identify differentially expressed genes (DEGs), key driver genes and coexpression networks between LGG-P vs LGG-R, GBM-P vs GBM-R pairs. Then, the CREEDS database was used to find potential drugs that could reverse the DEGs and key drivers.Results: We identified 75 upregulated and 130 downregulated genes between LGG-P and LGG-R samples, which were mainly enriched in human papillomavirus (HPV) infection, PI3K-Akt signaling pathway, Wnt signaling pathway, and ECM-receptor interaction. A total of 262 key driver genes were obtained with frizzled class receptor 8 (FZD8), guanine nucleotide-binding protein subunit gamma-12 (GNG12), and G protein subunit β2 (GNB2) as the top hub genes. By screening the CREEDS database, we got 4 drugs (Paclitaxel, 6-benzyladenine, Erlotinib, Cidofovir) that could downregulate the expression of up-regulated genes and 5 drugs (Fenofibrate, Oxaliplatin, Bilirubin, Nutlins, Valproic acid) that could upregulate the expression of down-regulated genes. These drugs may have a potential in combating recurrence of gliomas.Conclusion: We proposed a time-saving strategy based on drug perturbation induced gene expression changes to find new drugs that may have a potential to treat recurrent gliomas.


Sign in / Sign up

Export Citation Format

Share Document