scholarly journals A new group of compounds derived from 4-, 5-, 6- and 7-aminoindoles with antimicrobial activity

2018 ◽  
Vol 4 (3) ◽  
pp. 27-36 ◽  
Author(s):  
Irina Stepanenko ◽  
Semen Yamashkin ◽  
Yuliya Kostina ◽  
Alyona Batarsheva ◽  
Mikhail Mironov

Introduction. The problem of antibiotic resistance of microorganisms is becoming more urgent in the twenty-first century. Microorganisms possess an evolutionary adaptive capacity. Non-adherence to the basic principles of rational antibiotic therapy leads to menacing consequences. More and more pathogenic microbes are becoming resistant to two or more antibiotics. The search for new compounds with antimicrobial activity is one of the principles for overcoming the antibiotic resistance of microorganisms. Materials and methods. Eighteen test-strains of microorganisms and more than 2000 clinical strains of microorganisms, representating the families Micrococcaceae, Streptococcaceae, Enterobacteriaceae, Moraxellaceae, Pseudomonadaceae, Sphingomonadaceae, Xanthomonadaceae were studied for sensitivity to the compounds derived from 4-, 5-, 6- and 7-aminoindoles. A method of serial dilutions to determine the minimal inhibitory concentration (MIC) of the compounds under study was used in the study, as well as a disc diffusion method. Results and discussion. Sensitivity of the test-strains and of clinical strains of microorganisms to the resulting compounds was studied. The compounds based on substituted 4-, 5-, 6-, 7-aminoindoles showed different activity against the test strains and experimental strains of microorganisms in vitro. It was found that the marked antibacterial activity was exhibited by the compounds containing a trifluoromethyl group. The most significant activity was noted in amides and pyrroloquinolones based on 4-aminoindole, 6-aminoindole and 7-aminoindole.The most effective compounds with laboratory codes 5D, 7D, 39D, S3, HD, 4D showed a pronounced antibacterial activity. Conclusion. Antimicrobial activity of the substituted amides and pyrroloquinolines on the basis of 4-, 5-, 6-, 7-aminoindoles was etermined in our study, as well as the spectra of their action against Gram-positive and Gram-negative microorganisms, which are causative agents of non-specific and certain specific human infectious diseases. Moreover, we evaluated the synthetic potentials of the substituted 4-, 5-, 6-, 7-aminoindoles as the starting compounds for synthesizing a series of indolylamides and pyrroloquinolines. Also, the prospects for targeted synthesis of biologically active compounds based on indole-type aromatic amines were determined.

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2019 ◽  
Vol 21 (2) ◽  
pp. 125
Author(s):  
U.B. Issayeva ◽  
G.S. Akhmetova ◽  
U.M. Datkhayev ◽  
M.T. Omyrzakov ◽  
K.D. Praliyev ◽  
...  

With the aim to introduce fragment of cyclopropane and fragments of p-, m-, o-fluorophenyls into the structures of N-ethoxyethylpiperidines, acylation of oxime and phenylacetylenic alcohol of 1-(2-ethoxyethyl)-4-ketopiperidine by cyclopropanecarbonylchloride was carried out; on the basis of 1-(2-ethoxyethyl)-4-ethynyl-4-hydroxypiperidine (cascaine alcohol), acylation by 4-fluoro-, 3-fluoro-, 2-fluorobenzoylchlorides was carried out with formation of the corresponding piperidine containing hydrochlorides of cyclopropanecarboxylic acid esters and para-, meta-, ortho-fluorobenzoic esters. Acylation reaction on the hydroxyl group of compounds is carried out in absolute dioxane, the acylating agents are cyclopropanecarbonylchloride, p-, m-, o-fluorobenzoyl chlorides taken in excess. The obtained esters of cyclopropanecarboxylic and para-, meta-, ortho-fluorobenzoic acids are crystalline substances with a clear melting point, well soluble in water, ethanol, acetone. P-fluorobenzoates are obtained with better yields, m-fluorobenzoates occupy an intermediate position, and o-fluorobenzoates are formed with the lowest yields. The best yields of fluorobenzoates are obtained using dioxane as a solvent. Para-, meta-, ortho-fluorobenzoic esters of 1-(2-ethoxyethyl)-4-ethynyl-4-hydroxypiperidine coded A-4 – A-6 were studied for the presence of antimicrobial activity, the actions of these preparations were evaluated in vitro in relation to strains of gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, gram-negative strains of Escheriсhia coli, Pseudomonas aeruginosa and to yeast fungus Сandida albicans by the diffusion method into agar (holes). Introduction of fluorine atom into the structure of cascaine lead to manifestation of antimicrobial activity.


Author(s):  
RAJA CHINNAMANAYAKAR ◽  
EZHILARASI MR ◽  
PRABHA B ◽  
KULANDHAIVEL M

Objective: The objective of this study was to evaluate in silico and in vitro anticancer activity for synthesized cyclohexane-1,3-dione derivatives. Methods: The new series of cyclohexane-1,3-dione derivatives were synthesized based on the Michael addition reaction. Further, the structures of the synthesized compounds were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR spectral data. Then, the in silico molecular docking studies were carried out using AutoDock tool version 1.5.6 and AutoDock version 4.2.5.1 docking program. The antimicrobial activity was carried out using the agar disk diffusion method, and the in vitro anticancer activity was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for the synthesized compound. Results: In silico docking study, compound 5c showed good binding score and binding interactions with selected bacterial proteins and breast cancer protein. Further, compound (5a-5h) was tested for their antimicrobial activity and compound 5c was only tested for anticancer activity (human breast adenocarcinoma 3,4-methylenedioxyamphetamine-MB-231 cell line). Compound 5c was found to be the most active one of all the tested compounds. In the MTT assay compound, 5c showed the LC50 value of 10.31±0.003 μg/ml. In antimicrobial activity, the minimum inhibitory concentration of compound 5c is 2.5 mg/ml. Conclusion: An efficient synthesis of biologically active cyclohexane-1, 3-dione derivatives has been developed.


Author(s):  
Semwal Amit Negi Sweta

Abstract-Medicinal plants represent an essential source of drugs and have played an important role in healthcaresystem.PyracanthacrenulataandZanthoxylum armatumhave been used as traditional medicine. The main aim of the study was to find the antibacterial activity of the selected plants against bacterialspecies:E.coliandPseudomonasaeruginosa. The solvents used for plant extraction were hexane, chloroform, ethanol and aqueous. The in vitro antimicrobial activity was performed by Agar disk diffusion method. The hexane and aqueous extracts showed moderate activity whereas theethanolicextractsshowedasignificantantibacterial activity. In the study Tetracycline was used as standard. The combined ethanolic extract of both the selected plant showed the synergistic effect on the bacterial strain tested. This leads to the conclusion that the combined effect can have possible application in the development of products as antimicrobial.


Author(s):  
Ya. M. Steshenko ◽  
O. V. Mazulin ◽  
N. M. Polishchuk

The main problem of modern phytotherapy is the medicinal plants that have a sufficient raw material base and contain a large number of biologically active substances. Treatment of diseases with synthetic drugs leads to the development of resistance to pathogenic microflora and the appearance of allergic reactions. Therefore, to solve this problem, it is necessary to find new plant-based antimicrobials that are safe for long-term use and have a wide spectrum of action. The aim of the work was to study the antibacterial and fungicidal activity of the essential oil of Thymus x citriodorus (Pers.) Schreb. var. “Silver Queen”. Materials and methods. The essential oil of Thymus x citriodorus (Pers.) Schreb. var. “Silver Queen” was used for the experimental part. To test the antimicrobial and antifungal action of the essential oil, reference test strains, gram-positive and gram-negative bacteria, as well as yeast-like fungi of the genus Candida were selected. The studies were performed in vitro using the disco-diffusion method. Results. Studies have shown that the essential oil of Thymus x citriodorus (Pers.) Schreb. var. “Silver Queen” has a significant antibacterial effect against S. aureus ATCC 25923 (diameters of growth inhibition were 14.60 ± 1.52 mm) and fungicidal effect Candida albicans ATCC 885-6530 (29.30 ± 2.82 mm). Antibacterial activity of the essential oil was detected in relation to E. coli (19.60 ± 1.85 mm). It was experimentally proven that the essential oil had no bactericidal effect on the test strain of P. aeruginosa. Conclusions. It was found that the essential oil of the studied hybrid species Thymus x citriodorus (Pers.) Schreb. var. “Silver Queen” shows a significant antibacterial activity and is promising for further research.


Gaia Scientia ◽  
2016 ◽  
Vol 10 (4) ◽  
pp. 681-689
Author(s):  
Filipe Gutierre Carvalho de Lima ◽  
Maria Arlene Pessoa da Silva ◽  
Beatriz Tupinambá Freitas ◽  
José Carlos Marques Freitas ◽  
Claudener de Souza Teixeira ◽  
...  

Bacterial resistance to current drugs is a major public health problem worldwide. The search for biologically active compounds that act synergistically with antibiotics for their use at lower concentrations would be of great help in overcoming bacterial resistance. Bowdichia virgilioides Kunth, also known as sucupira-preta or sucupira-do-cerrado, is a species of the family LeguminosaePapilionoidea that occurs in both primary and secondary formations, always in fast-draining areas. The objective of this study was to evaluate of antibiotic modulation through of the fixed oil from the seeds of B. virgiloides activity. . The seeds showed a considerable amount of oil, with a yield of approximately 11%. The oil did not inhibit bacterial growth, but its combination with the antibiotics tested produced growth inhibition. Our data indicated that the oil extracted from B. virgiloides seeds has no antibacterial activity at clinically relevant concentrations, but when combined with aminoglycoside antibiotics, it showed modulatory activity, lowering the antibiotic resistance of Gram-negative strains.


2018 ◽  
Vol 17 (2) ◽  
pp. 197-203
Author(s):  
Tina Rostinawati ◽  
Ami Tjitraresmi ◽  
Myra Vania Wisnuputri

Methicillin-resistant Staphylococcus aureus (MRSA) is the most common bacteria causing nosocomial infections with high levels of resistance to available antibiotics. So, it is necessary to search for new compounds to solve this problem. Various studies showed antibacterial activity of rambutan peel but for Rambutan Binjai peel extract that are from Indonesia has never been studied against the MRSA. This study aims to determine the antibacterial activity, the value of minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) using agar diffusion method. The concentration of rambutan peel ethanol extract at as much as 62.5 mg/ml showed the inhibitory diameter i.e 21.3 ± 2.4 mm. MIC and MBC were in the same range, which was between 0.98 (mg/ml) to 1.95 (mg/ml). The activity strength of tetracycline against the extract was at 1:50. This revealed that Rambutan Binjai peel extract had great potency as antibacterial agent to MRSA. Dhaka Univ. J. Pharm. Sci. 17(2): 197-203, 2018 (December)


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Adel S. Al-Zubairi ◽  
Ahmad Bustamam Abdul ◽  
Siddig Ibrahim Abdelwahab ◽  
Chew Yuan Peng ◽  
Syam Mohan ◽  
...  

The use of evidence-based complementary and alternative medicine is increasing rapidly.Eleucine indica(EI) is traditionally used in ailments associated with liver and kidneys. The therapeutic benefit of the medicinal plants is often attributed to their antioxidant properties. Therefore, the aim of this study was to screen the hexane, dicholoromethane, ethyl acetate (EA) and methanol extracts (MeTH) of EI for their antioxidant, antibacterial and anti-cancer effects using total phenolic contents (TPCs) and DPPH, disc diffusion method and MTT cytotoxicity assays, respectively. The MeTH was showed to have the highest TPC and scavenging activity (77.7%) on DPPH assay, followed by EA (64.5%), hexane (47.19%) and DCM (40.83%) extracts, whereas the MeTH showed no inhibitory effect on all tested bacteria strains. However, the EA extract exhibited a broad spectrum antibacterial activity against all tested bacteria exceptBacillus subtilis, in which this bacterium was found to be resistant to all EI extracts. Meanwhile, hexane extract was demonstrated to have a remarkable antibacterial activity against methicillin resistantStaphylococcus aureus(MRSA) andPseudomonas aeruginosa, while the dicholoromethane extract did not exhibit significant activity againstP. aeruginosa. None of the extracts showed significant cytotoxic activity towards MCF-7, HT-29 and CEM-SS human cancer cell lines after 72 h incubation time (IC50> 30 μg/ml). These results demonstrate that the extract prepared from the EI possesses antioxidant activityin vitroin addition to antibacterial properties. Further investigations are needed to verify the antioxidant effectsin vitroandin vivo.


Author(s):  
Abdulmajeed Alsamarrai ◽  
Saba Abdulghani

A sequence of new acetamide derivatives 9-15 of primary, secondary amine, and para-toluene sulphinate sodium salt have been synthesized under microwave irradiation and assessed in vitro for their antibacterial activity against one Gram-positive and two Gram-negative bacterial species such as S. pyogenes, E. coli, and P.mirabilis using the Mueller-Hinton Agar diffusion (well diffusion) method. The synthesized compounds with significant differences in inhibition diameters and MICs were compared with those of amoxicillin, ampicillin, cephalothin, azithromycin and doxycycline. All of the evaluated acetamide derivatives were used with varying inhibition concentrations of 6.25, 12.5, 37.5, 62.5, 87.5, 112.5 and 125 µg/ml. The results show that the most important antibacterial properties exercised by the synthetic compounds 9 and 11 bearing para-chlorophenyl moiety incorporated into the 2-position moiety of acetamide 2. The molecular structures of the new compounds were determined using FT-IR, 1H-NMR techniques.


2020 ◽  
Vol 71 (1) ◽  
pp. 13-21
Author(s):  
Alexandra Avram ◽  
Maria Gorea ◽  
Sorin Rapuntean ◽  
Aurora Mocanu ◽  
Gertrud Alexandra Paltinean ◽  
...  

There is a continuous need for discovering new nanomaterials with antibacterial activity against various pathogens, like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This study was performed to assess the antimicrobial activity of two novel nanostructured forsterites, both in the absence and the presence of silver nanoparticles (AgNPs). The two nano forsterites (FS) were prepared by advanced sol-gel (FSsg) and precipitation (FSpp) methods. Preparation of colloidal AgNPs systems was realized by using the precursor, AgNO3, and the trisodium citrate and tanic acid assuring the formation and stabilization of AgNPs. The characterization of nano forsterite powders was carried out using complementary physical methods: XRD, SEM, and AFM. The AgNPs were characterized by UV-Vis spectra, STEM and AFM imaging. The antimicrobial activity was studied by the agar well diffusion method both in the FS native state, as FSsg and FSpp, and in their mixture with silver nanoparticles (AgNPs). The inhibitory effect of synthesized forsterites, FSsg and FSpp, particularly variants with AgNPs was found only on the S. aureus strain, the zones of inhibition being between 8 and 10 mm, and more intensely expressed in the FSpp-AgNPs dispersions. These findings open new orthopedic applications of these systems, particularly for antimicrobial coated metallic implants.


Sign in / Sign up

Export Citation Format

Share Document