Assessment of pretreatments on drying kinetics and quality characteristics of thin-layer dried red pepper

2020 ◽  
Vol 44 (6) ◽  
pp. 543-556
Author(s):  
Bige İNCEDAYI

In this study, the effect of pretreatments (hot water blanching, microwave blanching, and ohmic heating) on the drying kinetics and quality characteristics of red pepper, dried at 60 and 70 °C, was investigated. The drying times varied between 205–290 min, depending on the pretreatment and temperature applied. The drying rate also changed based on the pretreatment and the falling rate period was observed. Four mathematical models were fitted to experimental data and the logarithmic model was found to be the best for all of the samples. Effective moisture diffusivity values obtained from Fick’s second law of diffusion ranged from 6.11 × 10–10 to 9.31 × 10–10 m2 s–1. The total phenolic contents, antioxidant capacities, and red pigment amounts of the dried peppers varied between 6.95 and 9.45 mg GAE g–1dry matter (DM), 2610.43 and 4463.96 mmol AEAC 100 g–1DM, and 184 and 443mg 100 g–1DM, respectively. Rehydration ability of pretreated samples was similar to or slightly lower than that of the untreated samples. As a result, it can be suggested that ohmic heating before drying at a temperature of 70 °C could be a promising alternative pretreatment to decrease drying time and produce high-quality dried red pepper.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
James Owusu-Kwarteng ◽  
Francis K. K. Kori ◽  
Fortune Akabanda

The objective of this work was to determine the effects of blanching and two drying methods, open-sun drying and natural convection solar drying, on the quality characteristics of red pepper. A 2 × 3 factorial design with experimental factors as 2 drying methods (open-sun drying and use of solar dryer) and 3 levels of pepper blanching (unblanched, blanched in plain water, and blanched in 2% NaCl) was conducted. Dried pepper samples were analysed for chemical composition, microbial load, and consumer sensory acceptability. Blanching of pepper in 2% NaCl solution followed by drying in a natural convection solar dryer reduced drying time by 15 hours. Similarly, a combination of blanching and drying in the solar dryer improved microbial quality of dried pepper. However, blanching and drying processes resulted in reduction in nutrients such as vitamin C and minerals content of pepper. Blanching followed by drying in natural convection solar dryer had the highest consumer acceptability scores for colour and overall acceptability, while texture and aroma were not significantly (p>0.05) affected by the different treatments. Therefore, natural convection solar dryer can be used to dry pepper with acceptable microbial and sensory qualities, as an alternative to open-sun drying.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hai-ou Wang ◽  
Qing-quan Fu ◽  
Shou-jiang Chen ◽  
Zhi-chao Hu ◽  
Huan-xiong Xie

The effect of hot-water blanching (HWB) on drying characteristics and product qualities of dried apple slices with the novel integrated freeze-drying (NIFD) process was investigated by comparing with 3 different FD methods. Compared with the NIFD process without HWB pretreatment (VF-FD), the NIFD process with HWB pretreatment (HWB-VF-FD) resulted in a significantly higher mass loss and more sufficient freezing in vacuum-frozen samples, significantly higher rehydration ratio (RR), higher shrinkage ratio (SR), smaller Vitamin C (VC) content and lower hardness and better apparent shape in freeze-dried samples, and fewer change to the color of the dried or rehydrated samples (p<0.05). Compared with the conventional FD process with HWB pretreatment (HWB-PF-FD), HWB-VF-FD cost significantly less processing time and FD time and obtained significantly higher RR (p<0.05), almost the equivalent SR, VC content, and hardness, and similar appearance in dried samples. The microstructure of apple cell tissues was analyzed by transmission electron microscopy and scanning electron microscopy to interpret the above differences in drying characteristics and product qualities. The results suggested that the NIFD process of apple slices with HWB pretreatment was a promising alternative method to decrease drying time, achieve similar product quality, and simplify the process steps of the conventional FD technology.


Author(s):  
Ignat Tolstorebrov ◽  
Trygve Magne Eikevik ◽  
Inna Petrova ◽  
Yulia Shokina ◽  
Michael Bantle

Drying kinetics of Saccharina latissima (raw and blanched) at low temperatures (10.0, 25.0 and 38.0 °C) was studied. The effective moisture diffusivity coefficient varied due to temperature alterations in the range between 1.4 and 4.5 10-10 m2/s for raw and 0.91 and 2.56 10-10 m2/s for blanched seaweeds. Significant changes in structural properties and chemical composition resulted in a much longer drying time of blanched seaweeds, when compared with raw. Drying temperature of 38.0 °C resulted in more brown color, when compared with other samples. Sorption characteristics of dried raw seaweeds depended on salt content and showed high accumulation of moisture at relative humidity of air of 80.0 %. The blanched seaweeds showed linear accumulation of moisture within increasing of relative humidity of drying air from 20.0 to 80.0 %, but high level of hysteresis was determined between sorption and desorption isotherms. The shrinkage development within dewatering of blanched and raw samples was also studied. Keywords: brown seaweeds, drying kinetics, sorption isotherms, color 


2018 ◽  
Vol 6 (2) ◽  
pp. 552-565 ◽  
Author(s):  
Eunice Akello Mewa ◽  
Michael Wandayi Okoth ◽  
Catherine Nkirote Kunyanga ◽  
Musa Njue Rugiri

The objective of the present study was to determine the drying kinetics, moisture diffusivity and sensory quality of convective air dried beef. The effect of temperature of drying (30-60°C) and thickness of samples (2.5-10 mm) on the convective thin-layer drying kinetics of beefdried in a cabinet dryer was evaluated. Five semi-theoretical models were fit to the drying experimentaldata with the aim of predicting drying characteristics of beef and fitting quality of models determined using the standard error of estimate (SEE)and coefficient of determination (R2). Determination ofeffective moisture diffusivity (Deff) from the experimental drying datawas done and sensory quality of the optimized dried cooked and uncookedbeef samplesevaluated. Drying time and rate of drying increased with an increasing temperature but decreased with increased slice thickness. However, there was overlapping of drying curves at 40-50°C. Among the selected models, Page model gave the best prediction of beef drying characteristics. Effective moisture diffusivity (Deff) ranged between 4.2337 x 10-11 and 5.5899 x 10-10 m2/s, increasing with an increase in air temperature and beef slice thickness.Of all the sensory parameters evaluated, texture was the only attribute that gave significantly different (P > 0.05) scores between the cooked and uncooked dried beef samples.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 916 ◽  
Author(s):  
Kemal Çağatay Selvi

The Linden (Tilia platyphyllos Scop.) is a highly popular herbal plant due to its central nervous system properties. In this study, thin layer drying kinetics of linden leave samples were experimentally investigated in an infrared (IR) dryer. In order to select the appropriate model for predicting the drying kinetics of linden leaves, eleven thin layer semi theoretical, theoretical, and empirical models, widely used in describing the drying behavior of agricultural products, were fitted to the experimental data. Moreover, the color, projected area (PA), total phenolic content (TPC), and total flavonoid content (TFC) were investigated. The results showed that the drying time decreased from 50 min to 20 min. with increased IR temperature from 50–70 °C. Therewithal, the Midilli model gave the most suitable data for 50 °C, 60 °C. Moreover, Verma et al. and Diffusion approximation models showed good results for 70 °C. The lightness and greenness of the dried linden leaves were significantly changed compared with fresh samples. The PA of dried sample decreased similar to the drying time. In addition, the drying temperature effect on the effective diffusion diffusivity (Deff) and activation energy (Ea) were also computed. The Deff ranges from 4.13 × 10−12 to 5.89 × 10−12 and Ea coefficient was 16.339 kJ/mol. Considering these results, the Midilli et al. model is above the 50 °C, 60 °C, and the Verma et al. and Diffusion to 70 °C, for explaining the drying behavior of linden leaves under IR drying. Moreover, it can be said that the Page model can be used, if it is desired, to express the drying behaviors, partially with the help of a simple equation material by drying. TPC and TFC values were statistically < 0.001 higher in dried samples compared to fresh samples; however, no change has been recorded of TPC and TFC values at different temperatures (50 °C, 60 °C, 70 °C).


Author(s):  
Monica Premi ◽  
Harish Sharma ◽  
Ashutosh Upadhyay

Abstract The present study examines the effect of air velocity on drying kinetics of the drumstick leaves in a forced convective dryer. The drumstick leaves were dried in the temperature range of 50–800 C, at different air velocity (Dv) of 0.5 and 1.3 m/s. The results indicated that drying temperature and air velocity are the factors in controlling the drying rate. Experimental data obtained for the samples for color, drying rate and drying time proved that air velocity of 1.3 m/s yielded the product superior in terms of both quality and energy efficiency as compared to the samples at 0.5 m/s. Activation energy for drumstick leaves dried with air velocity, 0.5 and 1.3 m/s was 12.50 and 32.74 kJ/mol respectively. The activation energy relates similarly with the effective moisture diffusivity which also increased with increase in air velocity and temperature.


2018 ◽  
Vol 192 ◽  
pp. 03041
Author(s):  
Setthawat Thanimkarn ◽  
Ekkapong Cheevitsopon ◽  
Jiraporn Sripinyowanich Jongyingcharoen

This study aimed to investigate the effect of drying temperature (40, 60, 80, and 100°C) on drying characteristics of Cissus quadrangularis Linn. (CQ) undergoing convective drying. Physical properties and phytochemicals of the dried CQ were also evaluated. CQ with the thickness of 5 mm was dried from about 10 to 0.1 g water/g dry matter. The results showed that increasing drying temperature increased drying rate (DR) and effective moisture diffusivity (Deff) and consequently decreased drying time. The drying time, maximum DR, and Deff were in the ranges of 85-1920 min, 0.0059-0.0248 g water/g dry matter·min, and 0.7302-9.1281×10-9 m2/s, respectively. Lower drying temperature could preserve quality of the dried CQ. Decreasing drying temperature resulted in greener and lower bulk density and shrinkage. The greatest total phenolic content (TPC) and quercetin content were obtained by drying the CQ at 60°C.


2011 ◽  
Vol 39 (2) ◽  
pp. 117 ◽  
Author(s):  
Abd El-Moneim M.R. AFIFY ◽  
Emad A. SHALABY ◽  
Hossam Saad EL-BELTAGI

The antioxidant activity of water extracts (cold and hot) of six caffeine products were carried out. The extracts were screened for total polyphenol contents and antioxidant activity using DPPH, ABTS methods and reducing power method at 50 and 100 μg/ml after 15 min and 30 min using DPPH, ABTS BHA and Caffeine as standard compounds. The results indicated that, the hot water extracts for different caffeine products showed higher antioxidant activity than those of cold extracts and this activity was time and concentration dependent. In addition, the activity was higher against ABTS radical more than DPPH and reducing power methods. Also, there is a positive correlation between the antioxidant and reducing compounds presented in water extracts of different caffeine products. The results of HPLC showed that fresh tea leaves are rich in flavanol monomers known as catechins. The most abundant catechin derivatives in green tea are EGC, EGCG and GC. On the other hand EGCG and GC are major catechin derivative in different caffeine product except El-Fakher tea and Cacao. Generally, these beverages had high antioxidant capacities and total phenolic contents, and could be important dietary sources of antioxidant phenolic for prevention of diseases caused by oxidative stress.


Author(s):  
Brijesh Srivastava ◽  
K. Padmeshore Singh ◽  
Wungshim Zimik

Oyster mushroom was treated with hot water and steam blanching prior to drying in cabinet dryer. A hot air cabinet dryer was used for drying mushroom at 40, 50, 60, 70 and 80°C temperatures. Solid loss was observed to be 25.46% and 3.32% (wb) during hot water and steam blanching, respectively. Highest drying rate was observed for hot water blanched mushroom followed by unblanched and steam blanched mushroom. This leads to more drying time for the steam blanched mushroom followed by the unblanched and hot water blanched mushroom for the same level of drying. The drying data was modeled for exponential and Page's drying model. Page's model was found to be better than the exponential model for the prediction of drying rate. The value of the model parameters of the exponential model was found to be higher than that of Page's model. The effective moisture diffusivity (De) was determined at different temperatures and found to be maximum for the hot water blanched mushroom and minimum for the steam blanched mushroom. The effective moisture diffusivity (De) increased with increase in temperature. The activation energy of hot water blanched, unblanched and steam blanched mushroom was estimated to be 25.324, 17.113 and 21.165 kJ/mol, respectively.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 210 ◽  
Author(s):  
Lisa Yen Wen Chua ◽  
Bee Lin Chua ◽  
Adam Figiel ◽  
Chien Hwa Chong ◽  
Aneta Wojdyło ◽  
...  

Drying is an important process in the preservation of antioxidants in medicinal plants. In this study, leaves of Phyla nodiflora, or commonly known as frog fruit, were dried using convective drying (CD) at 40, 50, and 60 °C; vacuum-microwave drying (VMD) at 6, 9, and 12 W/g; and convective pre-drying followed by vacuum-microwave finish drying (CPD–VMFD) at 50 °C and 9 W/g. Drying kinetics of P. nodiflora leaves was modelled, and the influences of drying methods on the antioxidant activity, total phenolic content, volatile and phytosterol contents, energy consumption, water activity, and color properties were determined. Results showed that drying kinetics was best described by modified Page model. VMD achieved highest drying rate, whereas VMFD considerably reduced the drying time of CD from 240 min to 105 min. CPD–VMFD was the best option to dry P. nodiflora in terms of retaining volatiles and phytosterols, with lower energy consumption than CD. Meanwhile, VMD at 6 W/g produced samples with the highest antioxidant activity with 2,2′-Azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) value of 11.00 and 15.99 µM Trolox/100 g dw, respectively.


Sign in / Sign up

Export Citation Format

Share Document