scholarly journals Impact of Network Topology on Energy Efficiency in WSN

Author(s):  
Mohammed Réda El Ouadi ◽  
Abderrahim Hasbi

<p class="0abstractCxSpFirst"><span lang="EN-US">Wireless communication network has a significant success in scientific and industrial communities. Due to its various advantages, this technology is considered as a key element in current network architectures. It represents the architecture that allows to group a large number of sensors to collect information about a physical process in different environments. The gathered data is transmitted to base station which communicates the information to the end user.</span></p><p class="0abstractCxSpFirst">Several protocols are proposed for WSNs routing, by considering the limited capacities of sensor nodes according to a specific topology that allows to organize the nodes within the network. However, the performance of each routing protocol mainly depends on the application requirements and its results in terms of the lifetime of WSN and satisfaction of objectives defined.</p><p class="0abstractCxSpLast"><span lang="EN-US">According of the structure of WSN, the routing techniques can be divided in three types hierarchical, location-based flat routing. This paper, present the different routing techniques in WSN, based on the organization of nodes in sensor area. We focus specially to study the three types, cluster-based, chain-based and location-based routing techniques. These techniques will be simulated in order to compared their performances with our protocol Location-Based LEACH (LOC-LEACH).</span></p>

Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Hanane Aznaoui ◽  
Said Raghay ◽  
Youssef Ouakrim ◽  
Layla Aziz

Rapid progress in technologies has led to the development of small sensor nodes. A wireless sensor network (WSN) is an interconnected collection of a large number of these small sensor nodes that is used to monitor and record the physical environment. WSNs have applications in diverse scenarios. They play an important role in tracking and monitoring in different domains, such as environmental research, military, and health care. In most of these applications, the WSN is composed of a large number of nodes deployed in an area of interest, and not all nodes are directly connected to the base station (BS). In some cases, batteries of nodes cannot be recharged or changed. For that, the most solution required to overcome these problems is to optimize energy consumed during communication. Data transmission in networks is maintained by routing protocols, which are responsible for discovering the required paths. This paper presents an improvement of the Geographic Adaptive Fidelity (GAF) routing protocol created on a smart actives node selection. The routing process works on cooperative agents communication where another node is activated in the same grid if the data collected are considered as important data, and a heuristic method is used to find an optimal path in terms of energy to transmit data collected until reaching the BS. Simulation results prove that the cooperative agents GAF (CAGAF) routing protocol proposed is more efficient compared to the basic version in terms of considering important data, energy consumed, and dead nodes.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


Author(s):  
Shahzad Ashraf ◽  
Tauqeer Ahmed

Abstract The sensor nodes deployed in underwater environment has different routing mechanism in contrast to the terrestrial network. Getting underwater data on pollution detection, control of the ecosystem, marine mining, catastrophe avoidance and strategic surveillance thereby demands smooth packet transmission from dynamic nodes to base station encounters numerous challenges, out of which selecting best communication link between source and destination node is a key phenomenon of Underwater sensor network. The meticulous research has been conducted to search out the best link selection mythology of bodacious underwater routing protocol EnOR, SURS‐PES and USPF. The performance has been evaluated through NS2 simulation for packet delivery ratio, end-to-end delay, network lifespan and network energy consumption.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Kashif Naseer Qureshi ◽  
Muhammad Umair Bashir ◽  
Jaime Lloret ◽  
Antonio Leon

Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Kiani

Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase), the sensors are placed into virtual layers. The second phase (data transmission) is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.


2014 ◽  
Vol 556-562 ◽  
pp. 5577-5581
Author(s):  
Hai Tao Wang ◽  
Hui Chen ◽  
Xue Ping Zhang ◽  
Li Yan

Sensor nodes easily suffer from failure, attack or capture because of the limited energy, storage, communication ability, complex and severe network environment when WSN is applied to emergency or battlefield environment. Thus, the basic scout mission is influenced. In this paper, a survivability route protocol named SRPC in cluster-based WSN is put forward. The protocol uses key negotiation and identity authentication mechanism to resist the attacks of malicious nodes; when the main cluster head is destroyed, monitoring data will be transmitted to the base station by the backup cluster head chain. The simulation results show that, SRPC protocol can not only resist the attacks of the enemy malicious nodes based on energy balance, but also assure reliable delivery of the packets after the cluster head is attacked or destroyed. As a result, the survivable ability of WSN in battlefield is improved.


2014 ◽  
Vol 614 ◽  
pp. 472-475 ◽  
Author(s):  
Jin Gang Cao

Due to limited energy, computing ability, and memory of Wireless sensor Networks(WSN), routing issue is one of the key factors for WSN. LEACH is the first clustering routing protocol, which can efficiently reduce the energy consumption and prolong the lifetime of WSN, but it also has some disadvantage. This paper proposed an improvement based LEACH, called LEACH-T. According to different number of clusters, LEACH-T uses variable time slot for different clusters in steady-state phase, and single-hop or multi-hop to transmit data between cluster heads and Base Station. Also it considered residual energy of sensor nodes and the optimal number of clusters during selection of the cluster heads. The simulation results show that LEACH-T has better performance than LEACH for prolonging the lifetime and reducing the energy consumption.


2019 ◽  
Vol 20 (4) ◽  
pp. 631-639 ◽  
Author(s):  
Suresh Kumar ◽  
Kiran Dhull ◽  
Payal Arora ◽  
Ashish Kumar Luhach

Wireless Sensor Networks (WSN’s) have gained a considerable importance and are used for a variety of applications. In WSN, an arrangement of sensor nodes is done to sense and collect information from its nearby environment and to send it back to the base station using routing protocol. The biggest challenges are how to handle the routing problems and to optimize the energy consumption in WSN. In this paper, performance evaluation of three energy models, Generic, Micaz and Micamotes, is presented using Ad-Hoc On demand Distance Vector (AODV) routing protocol. The performance evaluation is done using several parameters: Throughput, Jitter, Average End-to-End Delay (AEED), Total Packets Received (TPR) and Energy consumption inthree modes (transmit, receive and idle). Based on the evaluation, it has been found that Micamotes energy model using AODV routing protocol consumes less energy by 80.46% and 428.57% in transmit mode , 102.94% and 335.6% in receive mode from Micaz and Generic energy models, respectively.


2021 ◽  
Author(s):  
Jie Xiao

The first design presents a novel location-based key management and en-route data authentication proposal. It divides the whole sensing area into a number of location cells. A group of location cells consist of a logical group. A pairwise key between two sensor nodes is established based on grid-based bivariate t-degree polynomials. Any valid reading report needs to collect enough message authentication code (MACs) from different neighbours. These pairwise keys used for generating the MAC are forwarded several hops down to the base station for future en-route data authentication. The second design proposes a greedy location-based secure and energy-efficient data aggregation approach. It further utilizes data aggregation based on the previous design by setting up control groups, applying pattern codes, selecting and switching control head nodes dynamically and periodically. In addition, different from the first design, it only requires control head nodes to collect enough MACs in each reading report. Extensive analysis, evaluations and experiments show us that both designs are secure, efficient and resilient.


Sign in / Sign up

Export Citation Format

Share Document