Magnetic Sensors for Space Applications

Author(s):  
Neoclis Hadjigergiou ◽  
Marios Sophocleous ◽  
Evangelos Hristoforou ◽  
Paul Peter Sotiriadis

This chapter is composed of three parts. The first is an introductory part, providing general information about magnetism and related phenomena. Magnetic materials are also discussed and presented. Afterwards, the magnetic field and various measurement techniques are discussed. In the second part, different magnetic sensors used in a laboratory or space are presented. Magnetic sensors that are discussed include anisotropic magneto-resistance (AMR), giant magneto-resistance (GMR), giant magneto-impedance (GMI), flux-gate and superconducting quantum interference device (SQUID). Although some of them may be outdated and well known, they are widespread and they still pose an excellent choice for certain applications. Magnetic cleanliness is an important factor both in calibration and in normal operation of a system; in the third part, current techniques to isolate a system from the external magnetic field providing cleanliness are discussed.

Author(s):  
Anargyros T. Baklezos ◽  
Neoclis G. Hadjigeorgiou

This chapter is composed by three parts. The first is an introductory part, providing general information about magnetism and related phenomena. Magnetic materials are also discussed and presented. Afterwards, the magnetic field and various measurement techniques are discussed. In the second part, different magnetic sensors used in a laboratory or space are presented. Magnetic sensors that are discussed include anisotropic magneto-resistance (AMR), giant magneto-resistance (GMR), giant magneto-impedance (GMI), flux-gate, and superconducting quantum interference device (SQUID). Although some of them may be outdated and well known, they are widespread, and they still pose an excellent choice for certain applications. Advances in magnetometers also presented in order to provide the reader with the recent trends in the field. Magnetic cleanliness is an important factor both in calibration and in normal operation of a system; in the third part, current techniques to isolate a system from the external magnetic field providing cleanliness are discussed.


Author(s):  
O. Crépel ◽  
Y. Bouttement ◽  
P. Descamps ◽  
C. Goupil ◽  
P. Perdu ◽  
...  

Abstract We developed a system and a method to characterize the magnetic field induced by circuit board and electronic component, especially integrated inductor, with magnetic sensors. The different magnetic sensors are presented and several applications using this method are discussed. Particularly, in several semiconductor applications (e.g. Mobile phone), active dies are integrated with passive components. To minimize magnetic disturbance, arbitrary margin distances are used. We present a system to characterize precisely the magnetic emission to insure that the margin is sufficient and to reduce the size of the printed circuit board.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 150
Author(s):  
Hongpeng Zhang ◽  
Haotian Shi ◽  
Wei Li ◽  
Laihao Ma ◽  
Xupeng Zhao ◽  
...  

Hydraulic oil is the key medium for the normal operation of hydraulic machinery, which carries various wear debris. The information reflected by the wear debris can be used to predict the early failure of equipment and achieve predictive maintenance. In order to realize the real-time condition monitoring of hydraulic oil, an impedance debris sensor that can detect inductance and resistance parameters is designed and studied in this paper. The material and size of wear debris can be discriminated based on inductance-resistance detection method. Silicon steel strips and two rectangular channels are designed in the sensor. The silicon steel strips are used to enhance the magnetic field strength, and the double rectangular detection channels can make full use of the magnetic field distribution region, thereby improving the detection sensitivity and throughput of the sensor. The comparison experiment shows that the coils in series are more suitable for the monitoring of wear debris. By comparing and analyzing the direction and the presence or absence of the signal pulses, the debris sensor can detect and distinguish 46 µm iron particles and 110 µm copper particles. This impedance detection method provides a new technical support for the high-precision distinguishing measurement of metal debris. The sensor can not only be used for oil detection in the laboratory, but also can be made into portable oil detection device for machinery health monitoring.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Kyungshik Lee ◽  
Chongdu Cho

The feasibility of a noncontact sensor is investigated. This type of sensor can potentially be used for torque measurement in a speed-variable power transmission system. Torque can be read by examining the phase difference between two induction signals from respective magnetic sensors that detect the magnetic field intensity of permanent magnets mounted on the surface of a shaft in rotation. A real-time measuring algorithm that includes filtering and calibration is adopted to measure the torque magnitude. It is shown that this new torque sensor can perform well under rotation speeds ranging from 300 rpm to 500 rpm. As an interim report rather than a complete development, this work demonstrates the feasibility of noncontact torque measurement by monitoring a magnetic field. The result shows an error of less than 2% within the full test range, which is a sufficient competitive performance for commercial sensors. The price is very low compared to competitors in the marketplace, and the device does not require special handling of the shaft of the surface.


1998 ◽  
Vol 41 (3) ◽  
Author(s):  
P. Palangio

A broadband two axis flux-gate magnetometer was developed to obtain high sensitivity in magnetotelluric measurements. In magnetotelluric sounding, natural low frequency electromagnetic fields are used to estimate the conductivity of the Earth's interior. Because variations in the natural magnetic field have small amplitude(10-100 pT) in the frequency range 1 Hz to 100 Hz, highly sensitive magnetic sensors are required. In magnetotelluric measurements two long and heavy solenoids, which must be installed, in the field station, perpendicular to each other (north-south and east-west) and levelled in the horizontal plane are used. The coil is a critical component in magnetotelluric measurements because very slight motions create noise voltages, particularly troublesome in wooded areas; generally the installation takes place in a shallow trench. Moreover the coil records the derivative of the variations rather than the magnetic field variations, consequently the transfer function (amplitude and phase) of this sensor is not constant throughout the frequency range 0.001-100 Hz. The instrument, developed at L'Aquila Geomagnetic Observatory, has a flat response in both amplitude and phase in the frequency band DC-100 Hz, in addition it has low weight, low power, small volume and it is easier to install in the field than induction magnetometers. The sensivity of this magnetometer is 10 pT rms.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2704 ◽  
Author(s):  
Imran Ashraf ◽  
Soojung Hur ◽  
Yongwan Park

Wide expansion of smartphones triggered a rapid demand for precise localization that can meet the requirements of location-based services. Although the global positioning system is widely used for outdoor positioning, it cannot provide the same accuracy for the indoor. As a result, many alternative indoor positioning technologies like Wi-Fi, Bluetooth Low Energy (BLE), and geomagnetic field localization have been investigated during the last few years. Today smartphones possess a rich variety of embedded sensors like accelerometer, gyroscope, and magnetometer that can facilitate estimating the current location of the user. Traditional geomagnetic field-based fingerprint localization, although it shows promising results, it is limited by the fact that various smartphones have embedded magnetic sensors from different manufacturers and the magnetic field strength that is measured from these smartphones vary significantly. Consequently, the localization performance from various smartphones is different even when the same localization approach is used. So devising an approach that can provide similar performance with various smartphones is a big challenge. Contrary to previous works that build the fingerprint database from the geomagnetic field data of a single smartphone, this study proposes using the geomagnetic field data collected from multiple smartphones to make the geomagnetic field pattern (MP) database. Many experiments are carried out to analyze the performance of the proposed approach with various smartphones. Additionally, a lightweight threshold technique is proposed that can detect user motion using the acceleration data. Results demonstrate that the localization performance for four different smartphones is almost identical when tested with the database made using the magnetic field data from multiple smartphones than that of which considers the magnetic field data from only one smartphone. Moreover, the performance comparison with previous research indicates that the overall performance of smartphones is improved.


2014 ◽  
Vol 605 ◽  
pp. 629-632 ◽  
Author(s):  
N. Hadjigeorgiou

Magnetic sensors offer many essential benefits: they enable contactless and thus without wear measurement of mechanical amounts of such as the rotation angle and angular velocity. And are a powerful and economical solution. In this work became a successful attempt to detect and record the noise of a Anisotropic Magnetoresistors (AMR) sensor, hte HMC2003, which manufactured by Honeywell Inc. was tested for its ability to detect the magnetic field and as well as how the corruption, which are involved due to the noise.


Sensor Review ◽  
2016 ◽  
Vol 36 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Cuo Wang ◽  
Xingfei Li ◽  
Ke Kou ◽  
Chunguo Long

Purpose – This study aims to ameliorate the strength and uniformity of the magnetic field in the air-gap of quartz flexible accelerometers. Quartz flexible accelerometers (QFAs), a type of magneto-electric inertial sensors, have wide applications in inertial navigation systems, and their precision, linearity and stability performance are largely determined by the magnetic field in operation air-gap. To enhance the strength and uniformity of the magnetic field in the air-gap, a magnetic hat structure has been proposed to replace the traditional magnetic pole piece which tends to produce stratiform magnetic field distribution. Design/methodology/approach – Three-dimensional analysis in ANSYS workbench helps to exhibit magnetic field distribution for the structures with a pole piece and a magnetic hat, and under the hypothesis of cylindrical symmetry, two-dimensional finite element optimization by ANSYS APDL gives an optimal set of dimensions of the magnetic hat. Findings – Three structures of the QFA with a pole piece, a non-optimized magnetic hat and an optimized magnetic hat are compared by the simulation in ANSYS Maxwell and experiments measuring the electromagnetic rebalance force. The results show that the optimized hat can supply stronger and more uniform magnetic field, which is reflected by larger and more linear rebalance force. Originality/value – To the authors ' knowledge, the magnetic hat and its dimension optimization have rarely been reported, and they can find significant applications in designing QFAs or other similar magnetic sensors.


2020 ◽  
Author(s):  
Jeng-Hwa Yee ◽  
Jesper Gjerloev ◽  
Viacheslav Merkin ◽  
Karl Laundal

<p>The Zeeman effect of the O<sub>2</sub> 118 GHz spectral radiance measurements can be utilized to remotely measure the magnetic field perturbations at altitudes close to the auroral electrojets. The technique has been demonstrated using the measurements provided by the Microwave Limb Souncer onboard the Aura spacecraft.  The derived current-induced magnetic field perturbations were found to be highly correlated with those coincidently obtained by ground magnetometers and to be consistent with the well-known auroral electrojet current distribution thereby providing a strong argument for the validity of the technique. With today's technology, a 118 GHz instrument, can be miniaturized allowing it to fly on small satellites such as CubeSats.  A constellation of small satellites with each one carrying a number of these identical mini-radiometers would have the ability to provide simultaneous multipoint measurement of the magnetic field perturbations at altitudes close to the electrojet, thereby greatly advancing our understanding of the ionospheric current system.  In this paper, we present the Zeeman magnetic field sensing technique, the requirements and specifications of the instrument, and an example of a cost effectively cubesat mission that provides unprecedented measurements of the evolution and structure of the auroral electrojet system.</p>


2009 ◽  
Vol 23 (12n13) ◽  
pp. 2948-2954
Author(s):  
C. A. DUARTE ◽  
G. M. GUSEV ◽  
T. E. LAMAS ◽  
A. K. BAKAROV ◽  
J.-C. PORTAL

Here we present the results of magneto resistance measurements in tilted magnetic field and compare them with calculations. The comparison between calculated and measured spectra for the case of perpendicular fields enable us to estimate the dependence of the valley splitting as a function of the magnetic field and the total Landé g -factor (which is assumed to be independent of the magnetic field). Since both the exchange contribution to the Zeeman splitting as well as the valley splitting are properties associated with the 2D quantum confinement, they depend only on the perpendicular component of the magnetic field, while the bare Zeeman splitting depends on the total magnetic field. This information aided by the comparison between experimental and calculated gray scale maps permits to obtain separately the values of the exchange and the bare contribution to the g -factor.


Sign in / Sign up

Export Citation Format

Share Document