Broadcast Data Placement over Multiple Wireless Channels

2011 ◽  
pp. 155-176
Author(s):  
Dimitrios Katsaros ◽  
Yannis Manolopoulos

The advances in computer and communication technologies made possible an ubiquitous computing environment were clients equipped with portable devices can send and receive data anytime and from anyplace. Due to the asymmetry in communication and the scarceness of wireless resources, data broadcast is widely employed as an effective means in delivering data to the mobile clients. For reasons like heterogeneous communication capabilities and variable quality of service offerings, we may need to divide a single wireless channel into multiple physical or logical channels. Thus, we need efficient algorithms for placing the broadcast data into these multiple channels so as to reduce the client access time. The present chapter discusses algorithms for placing broadcast data to multiple wireless channels, which cannot be coalesced into a lesser number of high-bandwidth channels, assuming that there are no dependencies among the transmitted data. We give an algorithm for obtaining the optimal placement to the channels and explain its limitation since it is computationally very demanding and thus unfeasible. Then, we present heuristic schemes for obtaining suboptimal solutions to the problem of reporting on their implementation cost and their relative performance.

2018 ◽  
Vol 7 (1.9) ◽  
pp. 115
Author(s):  
G K.Venkatesh ◽  
P V.Rao

The LTE Long Term Evolution highly developed Technology, Handover is the essential function of the mobility of user in cellular networks in Time Division Duplex as well as Frequency Division Duplex. Handover is one of the essential that can affect the [QoS] Quality of Service with Capacity of Mobile Broadband Networks. Within mobile cellular network communication systems, a (spectrum) limited shared resource needs to be shared with all the users, so full duplex communication is achieved. This paper involves studying diverse Hand over delay parameters and also focus on reducing “Hard Handover delay” by minimizing interruption time, activation time, wireless channel accesses time as well as the wireless link transmission delay. Technique is developed in order to reduce the handover delay time in Time Division Duplex network which too reduces the wireless channel access time and the wireless link transmission delay. A novel handover algorithm is developed which would decreases the handover delay time and access time inside mobile network environment.Additional work may be conceded on to obtain enhanced performance and Quality of service in Time Division Duplex mobile network.


Author(s):  
Sumita Mishra ◽  
Nidhi Mathur

During the past few decades wireless technology has seen a tremendous growth. The recent introduction of high-end mobile devices has further increased subscribers' demand for high bandwidth and quality of service. The number of nodes in future cellular systems will be too large to be configured and maintained manually. Further the mobility of users, the varying nature of the wireless channel and variation in user demand systems requires optimization of network parameters and delay in configuration may cause congestion and poor Quality of Service. Due to this increased complexity and the huge scale of wireless systems the network configuration, optimization and maintenance process performed by radio engineers has become inefficient and therefore, lot of research is being done to introduce self-optimizing capabilities within the network, which is expected to permit higher end user Quality of Service (QoS) and less operation cost and maintenance cost for telecom service providers. This chapter details the key aspects related to self optimization of next generation cellular networks.


Author(s):  
Agustinus Borgy Waluyo

A very large number of broadcast items affect the access time of mobile clients to retrieve data item of interest. This is due to high waiting time for mobile clients to find the desired data item over wireless channel. In this chapter, the authors propose a method to optimize query access time and hence minimize power consumption. The proposed method is divided into two stages: (1) The authors present analytical models and utilize the analytical models for both query access time over broadcast channel and on-demand channel; (2) they present a global index, an indexing scheme designed to assist data dissemination over multi broadcast channel. Several factors are taken into account, which include request arrival rate, service rate, number of request, size of data item, size of request, number of data item to retrieve, and bandwidth. Simulation models are developed to find out the performance of the analytical model. Finally, the authors compare the performance of the proposed method against the conventional approach.


2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


2021 ◽  
Vol 413 (9) ◽  
pp. 2389-2406 ◽  
Author(s):  
Soumyabrata Banik ◽  
Sindhoora Kaniyala Melanthota ◽  
Arbaaz ◽  
Joel Markus Vaz ◽  
Vishak Madhwaraj Kadambalithaya ◽  
...  

AbstractSmartphone-based imaging devices (SIDs) have shown to be versatile and have a wide range of biomedical applications. With the increasing demand for high-quality medical services, technological interventions such as portable devices that can be used in remote and resource-less conditions and have an impact on quantity and quality of care. Additionally, smartphone-based devices have shown their application in the field of teleimaging, food technology, education, etc. Depending on the application and imaging capability required, the optical arrangement of the SID varies which enables them to be used in multiple setups like bright-field, fluorescence, dark-field, and multiple arrays with certain changes in their optics and illumination. This comprehensive review discusses the numerous applications and development of SIDs towards histopathological examination, detection of bacteria and viruses, food technology, and routine diagnosis. Smartphone-based devices are complemented with deep learning methods to further increase the efficiency of the devices.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 864
Author(s):  
Qingzheng Xu ◽  
Na Wang ◽  
Lei Wang ◽  
Wei Li ◽  
Qian Sun

Traditional evolution algorithms tend to start the search from scratch. However, real-world problems seldom exist in isolation and humans effectively manage and execute multiple tasks at the same time. Inspired by this concept, the paradigm of multi-task evolutionary computation (MTEC) has recently emerged as an effective means of facilitating implicit or explicit knowledge transfer across optimization tasks, thereby potentially accelerating convergence and improving the quality of solutions for multi-task optimization problems. An increasing number of works have thus been proposed since 2016. The authors collect the abundant specialized literature related to this novel optimization paradigm that was published in the past five years. The quantity of papers, the nationality of authors, and the important professional publications are analyzed by a statistical method. As a survey on state-of-the-art of research on this topic, this review article covers basic concepts, theoretical foundation, basic implementation approaches of MTEC, related extension issues of MTEC, and typical application fields in science and engineering. In particular, several approaches of chromosome encoding and decoding, intro-population reproduction, inter-population reproduction, and evaluation and selection are reviewed when developing an effective MTEC algorithm. A number of open challenges to date, along with promising directions that can be undertaken to help move it forward in the future, are also discussed according to the current state. The principal purpose is to provide a comprehensive review and examination of MTEC for researchers in this community, as well as promote more practitioners working in the related fields to be involved in this fascinating territory.


Author(s):  
Л.Д. Александрова ◽  
Р.А. Богачева ◽  
Т.А. Чекалина ◽  
М.В. Максимова ◽  
В.И. Тимонина

Изучение возможностей мозга для повышения качества обучения находится в центре внимания педагогической науки уже много лет. Развитие цифровизации позволило использовать в исследованиях специальное оборудование, с помощью которого можно оценивать и контролировать работу мозга, развивать умственные способности, познавательные функции и т. п. Нейротехнологии стали эффективным средством, позволяющим трансформировать образовательный процесс за счет подбора специального учебного контента с учетом индивидуальных особенностей обучающихся. Вместе с тем возникает необходимость в конкретизации терминологии и определении актуальных направлений исследований в данной области. For a long time, the study of the brain capabilities for the improvement of the quality of education has been an urgent direction in pedagogical science. Due to the development of digitalization, new areas of research have emerged related to the use of special equipment that makes it possible to assess and control brainwork, develop mental abilities, cognitive functions, etc. One of them is neurotechnology, which is an effective means of transforming the educational process: it offers educational content based on the individual characteristics of students. Thus, a need to concretize the terminology and determine the current research areas arises. The article aims to attempt to fill this gap with the help of a representative analysis of publications on neurotechnologies, as well as the essence of neuroeducation.


2012 ◽  
Vol 02 (04) ◽  
pp. 20-25
Author(s):  
Anantha Raj A. Arokiasamy

The purpose of this paper is to analyze the integration of Information and Communication Technologies (ICT) in higher education for imparting easily accessible, affordable and quality higher education leading to the uplift of Malaysia. The focus of the paper is on the benefits that ICT integration in education can provide, right from breaking time and distance barriers to facilitating collaboration and knowledge sharing among geographically distributed students. ICT increases the flexibility of delivery of education so that learners can access knowledge anytime and anywhere. It can influence the way students are taught and how they learn as now the processes are learner driven and not by teachers. This in turn would better prepare the learners for lifelong learning as well as to contribute to the industry. We will also analyze if ICT does indeed improve or hinder the quality of learning among higher education students. This paper reports on the changing trends in use of ICTs for instruction in higher education institutions (HEIs) and discusses a mini-case study of how ICTs are being used by lecturers in one university in Malaysia.


2004 ◽  
Vol 36 (04) ◽  
pp. 1021-1045 ◽  
Author(s):  
Sanjay Shakkottai ◽  
R. Srikant ◽  
Alexander L. Stolyar

We consider the problem of scheduling the transmissions of multiple data users (flows) sharing the same wireless channel (server). The unique feature of this problem is the fact that the capacity (service rate) of the channel varies randomly with time and asynchronously for different users. We study a scheduling policy called the exponential scheduling rule, which was introduced in an earlier paper. Given a system withNusers, and any set of positive numbers {an},n= 1, 2,…,N, we show that in a heavy-traffic limit, under a nonrestrictive ‘complete resource pooling’ condition, this algorithm has the property that, for each timet, it (asymptotically) minimizes maxnanq̃n(t), whereq̃n(t) is the queue length of usernin the heavy-traffic regime.


Telecom IT ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 21-29
Author(s):  
B. Goldstein ◽  
V. Elagin ◽  
K. Kobzev ◽  
A. Grebenshchikova

Communications Service Providers are looking to 5G technology as an enabler for new revenues, with network slicing providing a cost-effective means of supporting multiple services on shared infrastructure. Different radio access technologies, network architectures, and core functions can be brought together under software control to deliver appropriate Quality of Service “slices,” enabling new levels of service innovation, such as high bandwidth for video applications, low latency for automation, and mass connectivity for Smart Cities.


Sign in / Sign up

Export Citation Format

Share Document