Epistemetrics

Author(s):  
Eliezer Geisler

This chapter is focused on the ways and processes by which we measure human knowledge at both the individual and organizational levels. “How” we measure knowledge is strongly related to the notion of “what” we measure, described in the previous chapter. The nature of knowledge that can be measured is the externalized or explicit knowledge shared and diffused among individuals and their organizations. We recognize the existence of KANEs as the clustering of sensorial input, but we are unable at this point to adequately measure them. We have the capability to measure sensorial activities and the locations in the brain of excitations and activities that signify cognition and emotions, but we are still unable to measure knowledge at the fundamental level of clustering of sensorial inputs.1

2014 ◽  
Vol 19 (5) ◽  
pp. 3-12
Author(s):  
Lorne Direnfeld ◽  
David B. Torrey ◽  
Jim Black ◽  
LuAnn Haley ◽  
Christopher R. Brigham

Abstract When an individual falls due to a nonwork-related episode of dizziness, hits their head and sustains injury, do workers’ compensation laws consider such injuries to be compensable? Bearing in mind that each state makes its own laws, the answer depends on what caused the loss of consciousness, and the second asks specifically what happened in the fall that caused the injury? The first question speaks to medical causation, which applies scientific analysis to determine the cause of the problem. The second question addresses legal causation: Under what factual circumstances are injuries of this type potentially covered under the law? Much nuance attends this analysis. The authors discuss idiopathic falls, which in this context means “unique to the individual” as opposed to “of unknown cause,” which is the familiar medical terminology. The article presents three detailed case studies that describe falls that had their genesis in episodes of loss of consciousness, followed by analyses by lawyer or judge authors who address the issue of compensability, including three scenarios from Arizona, California, and Pennsylvania. A medical (scientific) analysis must be thorough and must determine the facts regarding the fall and what occurred: Was the fall due to a fit (eg, a seizure with loss of consciousness attributable to anormal brain electrical activity) or a faint (eg, loss of consciousness attributable to a decrease in blood flow to the brain? The evaluator should be able to fully explain the basis for the conclusions, including references to current science.


2021 ◽  
Author(s):  
Qiushi Wang ◽  
Yuehua Xu ◽  
Tengda Zhao ◽  
Zhilei Xu ◽  
Yong He ◽  
...  

Abstract The functional connectome is highly distinctive in adults and adolescents, underlying individual differences in cognition and behavior. However, it remains unknown whether the individual uniqueness of the functional connectome is present in neonates, who are far from mature. Here, we utilized the multiband resting-state functional magnetic resonance imaging data of 40 healthy neonates from the Developing Human Connectome Project and a split-half analysis approach to characterize the uniqueness of the functional connectome in the neonatal brain. Through functional connectome-based individual identification analysis, we found that all the neonates were correctly identified, with the most discriminative regions predominantly confined to the higher-order cortices (e.g., prefrontal and parietal regions). The connectivities with the highest contributions to individual uniqueness were primarily located between different functional systems, and the short- (0–30 mm) and middle-range (30–60 mm) connectivities were more distinctive than the long-range (>60 mm) connectivities. Interestingly, we found that functional data with a scanning length longer than 3.5 min were able to capture the individual uniqueness in the functional connectome. Our results highlight that individual uniqueness is present in the functional connectome of neonates and provide insights into the brain mechanisms underlying individual differences in cognition and behavior later in life.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Helen Kathryn Cyrus

Purpose Overview of coaching for recovery. The paper aims to show an overview of work that was carried out over 11 years with groups of mental health and physical staff. As the facilitator who had run this course for the duration in Nottingham, this was an excellent opportunity to be at the forefront of a brand new project. Design/methodology/approach The introduction of the skills are taught over two consecutive days followed by a further day a month later. The idea of coaching is to be enabled to find the answers in themselves by the use of powerful questions and using the technique of the grow model, combined with practice enables the brain to come up with its own answers. Using rapport and enabling effective communication to deliver the outcome. Findings Evidence from staff/clients and the purpose of the paper shows that when you step back it allows the individual patients/staff to allow the brain to process to create to come up with their solutions, which then helps them to buy into the process and creates ownership. Research limitations/implications The evidence suggests that the approach that was there prior to the course was very much a clinical approach to working with clients and treating the person, administering medication and not focussing on the inner person or personal recovery. The staff review has shown that in the clinical context change is happening from the inside out. Practical implications “Helps change culture”; “change of work practice”; “it changed staff focus – not so prescriptive”; “powerful questions let clients come to their own conclusions”; “coaching gives the ability to find half full. Helps to offer reassurance and to find one spark of hope”. Social implications This has shown that the approach is now person-centred/holistic. This has been the “difference that has made the difference”. When this paper looks at the issues from a different angle in this case a coaching approach, applying technique, knowledge and powerful questions the results have changed. The same clients, same staff and same problems but with the use of a different approach, there is the evidence of a different outcome, which speaks for itself. The coaching method is more facilitative, therefore it illicit’s a different response, and therefore, result. Originality/value The results/evidence starts with the individual attending and their commitment to the process over the two-day course. Then going away for the four weeks/six for managers and a commitment again to practice. Returning to share the impact if any with the group. This, in turn, helps to inspire and gain motivation from the feedback to go back to work invigorated to keep going.


PEDIATRICS ◽  
1968 ◽  
Vol 42 (2) ◽  
pp. 381-382
Author(s):  
Randolph K. Byers

This rather modest-looking monograph deals not only with the large experiences of the author in relation to febrile seizures, but also presents an extensive review of the modern relevant literature (266 references in the bibliography). The most useful point made in the book, it seems to me, is that febrile convulsions are just that: i.e., convulsions coinciding with fever, the result of illness not directly involving the brain or its meninges. Such a seizure may be an isolated occurrence in the life of the individual, or it may recur a few times with fever; it may be the first sign of idiopathic chronic epilepsy, or it may be evidence of more or less apparent cerebral injury of a static sort; or, it may be the presenting symptom heralding progressive cerebral disease.


2019 ◽  
Vol 17 (3) ◽  
pp. 18-28
Author(s):  
E. Bykova ◽  
A. Savostyanov

Despite the large number of existing methods of the diagnosis of the brain, brain remains the least studied part of the human body. Electroencephalography (EEG) is one of the most popular methods of studying of brain activity due to its relative cheapness, harmless, and mobility of equipment. While analyzing the EEG data of the brain, the problem of solving of the inverse problem of electroencephalography, the localization of the sources of electrical activity of the brain, arises. This problem can be formulated as follows: according to the signals recorded on the surface of the head, it is necessary to determine the location of sources of these signals in the brain. The purpose of my research is to develop a software system for localization of brain activity sources based on the joint analysis of EEG and sMRI data. There are various approaches to solving of the inverse problem of EEG. To obtain the most exact results, some of them involve the use of data on the individual anatomy of the human head – structural magnetic resonance imaging (sMRI data). In this paper, one of these approaches is supposed to be used – Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA) proposed by A. Tsai. The article describes the main stages of the system, such as preprocessing of the initial data; the calculation of the special matrix of the EMSICA approach, the values of which show the level of activity of a certain part of the brain; visualization of brain activity sources on its three-dimensional model.


Analyzing the brain regions for different activations corresponding to the activation input for an experimental setup of task functional MRI or a resting state functional Magnetic Resonance Imaging(fMRI) for a diagnosed or healthy control is a challenging issue as the processing data is voluminous 4D data with nearly 1,51,552 voxels for a single volume of 261 scans fMRI. The data considered for analysis consists of 10 healthy controls and 10 Attention Deficit Hyperactivity Disorder(ADHD) fMRI. The workflow starts with preprocessing the individual scan for realignment, coregistration and Normalisation to Montreal Neurological Institute (MNI) space. Single site scan visit consists of 64x64x37 voxels. Seventy independent components are obtained from processed data by data reduction, Independent Component Analysis (ICA) calculation, Back reconstruction and Component Calibration. ICA performs satisfactorily well on temporal and spatial localization. Visual medial network activation is pronounced in ADHD Controls than in healthy people. Sagittal, Axial and Coronal view of ADHD controls is obtained as component number 42.The analysis is further used for the automatic classification of healthy controls and ADHD people.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2019 ◽  
Author(s):  
David A. Tovar ◽  
Micah M. Murray ◽  
Mark T. Wallace

AbstractObjects are the fundamental building blocks of how we create a representation of the external world. One major distinction amongst objects is between those that are animate versus inanimate. Many objects are specified by more than a single sense, yet the nature by which multisensory objects are represented by the brain remains poorly understood. Using representational similarity analysis of human EEG signals, we show enhanced encoding of audiovisual objects when compared to their corresponding visual and auditory objects. Surprisingly, we discovered the often-found processing advantages for animate objects was not evident in a multisensory context due to greater neural enhancement of inanimate objects—the more weakly encoded objects under unisensory conditions. Further analysis showed that the selective enhancement of inanimate audiovisual objects corresponded with an increase in shared representations across brain areas, suggesting that neural enhancement was mediated by multisensory integration. Moreover, a distance-to-bound analysis provided critical links between neural findings and behavior. Improvements in neural decoding at the individual exemplar level for audiovisual inanimate objects predicted reaction time differences between multisensory and unisensory presentations during a go/no-go animate categorization task. Interestingly, links between neural activity and behavioral measures were most prominent 100 to 200ms and 350 to 500ms after stimulus presentation, corresponding to time periods associated with sensory evidence accumulation and decision-making, respectively. Collectively, these findings provide key insights into a fundamental process the brain uses to maximize information it captures across sensory systems to perform object recognition.Significance StatementOur world is filled with an ever-changing milieu of sensory information that we are able to seamlessly transform into meaningful perceptual experience. We accomplish this feat by combining different features from our senses to construct objects. However, despite the fact that our senses do not work in isolation but rather in concert with each other, little is known about how the brain combines the senses together to form object representations. Here, we used EEG and machine learning to study how the brain processes auditory, visual, and audiovisual objects. Surprisingly, we found that non-living objects, the objects which were more difficult to process with one sense alone, benefited the most from engaging multiple senses.


1968 ◽  
Vol 171 (1024) ◽  
pp. 353-359 ◽  

In studying the brain, two levels of investigation emerge naturally. One of these concerns itself with properties of nerve cells, their numbers, patterns of firing, interconnexions, and so forth. The other considers the whole nervous system in what one may call ‘macroscopic’ terms. Thus it discusses ‘stimulus’, ‘response’, ‘decision’, etc. At this latter level, the nervous system operates with considerable unity. The individual nerve cells must therefore be linked in a well-integrated manner and the general nature of this integration has been recognized, especially by neurophysiologists such as Sherrington, to present a problem of central importance for our understanding of the brain. In previously published work, I have put forward a theory of how this unification of neural activity might be achieved and of a possible molecular biological basis of the necessary neural organization. In this talk I restrict myself to the first of these and thus give an account of what might be called the basic logic of the unification. I also indicate briefly how a simple hypothesis about the basis of memory would fit into such a theory.


2017 ◽  
Vol 79 (02) ◽  
pp. 200-204 ◽  
Author(s):  
Iuliia Zhuravlova ◽  
Maryna Kornieieva ◽  
Erik Rodrigues

Objectives The defining of the normal parameters of spacious relations and symmetry of the ventricular system of the brain depending on the gender and age is currently one of the topical research problems of clinical anatomy. The present research aims to identify the correlation between the morphometric parameters of the fourth ventricle of the brain and the shape of the skull in middle aged people. Design This is a prospective cohort study. Setting This study was set at the Trinity School of Medicine. Participants A total of 118 normal computed tomography scans of the head of people aged from 21 to 86 years (mean age—48.6 years ± 17.57) were selected for the study. Main Outcome Measures The anteroposterior, transverse diameters, and height of the fourth ventricle were measured and compared in dolichocranial, mesocranial, and brachycranial individuals. Results The study has shown the presence of a statistically significant difference between morphometric parameters of the fourth ventricle of the brain in dolichocranial, mesocranial, and brachycranial individuals. Conclusion The morphometric parameters of the fourth ventricle of the brain, such as height, anteroposterior, and transverse diameters, depend on the individual anatomic variability of the skull shape and gender.


Sign in / Sign up

Export Citation Format

Share Document