Multiband Multi-Standard LNA with CPW Transmission Line Inductor

Author(s):  
M. Ben Amor ◽  
M. Loulou ◽  
S. Quintanel ◽  
D. Pasquet

LNA is one very essential bloc in the RF receiver. Due to the growth of the standard evolution, this component must handle several frequency bands with the best performances. This chapter presents a wide band LNA design for IEEE802.16 standard with the CMOS 0.35µm technology. In this LNA, we use a CPW transmission line to design the inductive degeneration inductor of 0.38nH. This circuit has a S21 of 12dB, a noise figure less than 3dB and an input/output reflexion coefficient less than -10dB between 2 and 6GHz. The CPW line presents a characteristic impedance of 120O, an inductance of 0.38nH, a capacitance of few fF and a resistance less than 2O on the desired frequency band.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8340
Author(s):  
Behnam S. Rikan ◽  
David Kim ◽  
Kyung-Duk Choi ◽  
Seyed Ali H. Asl ◽  
Joon-Mo Yoo ◽  
...  

This paper presents and discusses a Low-Band (LB) Low Noise Amplifier (LNA) design for a diversity receive module where the application is for multi-mode cellular handsets. The LB LNA covers the frequency range between 617 MHz to 960 MHz in 5 different frequency bands and a 5 Pole Single Throw (5PST) switch selects the different frequency bands where two of them are for the main and three for the auxiliary bands. The presented structure covers the gain modes from −12 to 18 dB with 6 dB gain steps where each gain mode has a different current consumption. In order to achieve the Noise Figure (NF) specifications in high gain modes, we have adopted a cascode Common-Source (CS) with inductive source degeneration structure for this design. To achieve the S11 parameters and current consumption specifications, the core and cascode transistors for high gain modes (18 dB, 12 dB, and 6 dB) and low gain modes (0 dB, −6 dB, and −12 dB) have been separated. Nevertheless, to keep the area low and keep the phase discontinuity within ±10∘, we have shared the degeneration and load inductors between two cores. To compensate the performance for Process, Voltage, and Temperature (PVT) variations, the structure applies a Low Drop-Out (LDO) regulator and a corner case voltage compensator. The design has been proceeded in a 65-nm RSB process design kit and the supply voltage is 1 V. For 18 dB and −12 dB gain modes as two examples, the NF, current consumption, and Input Third Order Intercept Point (IIP3) values are 1.2 dB and 16 dB, 10.8 mA and 1.2 mA, and −6 dBm and 8 dBm, respectively.


2019 ◽  
Vol 8 (2) ◽  
pp. 2406-2410

An Ultra-Wide Band (UWB) Low Noise Amplifier (LNA) is affective in deciding the chip size and in the implementation cost at Radio Frequency applications. The proposed LNA design with an active inductor is a different solution to trounce the habit of passive inductors to cut the chip area. Designed in 90-nm CMOS process, a voltage gain of 9dB to 15.5dB for a supply voltage of 0.9v to 1.8V with a smallest Noise Figure (NF) of 5.7dB is achieved by the LNA, with low power utilization and at 2.40 GHz, with 345um2 of chip area.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 383
Author(s):  
Wazie M. Abdulkawi ◽  
Waqar Ahmad Malik ◽  
Sajjad Ur Rehman ◽  
Abdul Aziz ◽  
Abdel Fattah A. Sheta ◽  
...  

A compact four-element dual-band multiple-input and multiple-output (MIMO) antenna system is proposed to achieve high isolation and low channel capacity loss. The MIMO antenna was designed and optimized to cover the dual-frequency bands; the first frequency band is a wide band, and it covers the frequency range of 1550–2650 MHz, while the other frequency band covers the 3350–3650 MHz range. The measured wide-band impedance bandwidths of 1.1 GHz and 300 MHz were achieved in the lower and upper frequency bands, respectively. The proposed structure consists of four novel antenna elements, along with a plus-sign-shaped ground structure on an FR4 substrate. The overall electrical size of the whole dual-band MIMO antenna system is 0.3λ(W) × 0.3λ(L) × 0.008λ(H) for the lower frequency band. It achieved greater than 10 and 19 dB isolation in the lower and upper frequency bands, respectively. The antenna system accomplished an envelope correlation coefficient of |ρ|≤0.08 in the lower frequency band, while it achieved |ρ|≤0.02 in the higher frequency band. The computed channel capacity loss remained less than almost 0.4 bits/s/Hz in both frequency bands. Therefore, it achieved good performance in both frequency bands, with the additional advantage of a compact size. The proposed MIMO antenna is suitable for compact handheld devices and smartphones used for GSM (Global System for Mobiles), UMTS (Universal Mobile Telecommunications Service), WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), 5G sub-6 GHz, PCS (Personal Communications Service), and WLAN (wireless local area network) applications.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 369
Author(s):  
Chen Wu ◽  
Janaka Elangage

Using the finite difference time domain (FD-TD) method, this paper studies radiation structures that can have multiple tunable frequency bands between 0.4 GHz and 4 GHz, a fixed band in [3.97, 5.36] GHz and an extremely wideband from 6.14 GHz to 68.27 GHz, where a frequency band is defined by the voltage standing wave ratio (VSWR) less than or equal to two. The base radiation structure has a modified-biconical antenna configuration, called base MBA, and is fed by a square-coaxial line with characteristic impedance close to 50 ohms. A dielectric ring and an outer dielectric cover are used between the two modified cones to enlarge the frequency band and strengthen the structure. An equal number of metallic-rings can be stacked at both circular-ends of cones in the base MBA to tune the positions of the frequency bands that are lower than 4 GHz and to alter their vertical polarization (V-pol) patterns. However, compared with those of the base MBA, these stacked metallic rings do not make significant changes to the VSWR in the [3.97, 5.36] GHz and [6.14, 28.27] GHz bands and the radiation patterns in the [6.14, 28.27] GHz band. The simulation results show that the base MBA and its metallic-ring-loaded versions all have V-pol radiation characteristics at all frequency bands and have donut-shaped omnidirectional patterns only when the wavelength is bigger than the length of the structure. When the wavelength is less than the size of the radiation structure, the donut shape is modified with ripples on the V-pol radiation pattern. Sometimes deep notches could be observed when MBAs operated at the higher end of the extremely wideband. A 0.2 mm cube was used to construct the antenna structures with the consideration of using the 3D metal/dielectric printer technology to build the antennas in the future.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 804
Author(s):  
Gibeom Shin ◽  
Kyunghwan Kim ◽  
Kangseop Lee ◽  
Hyun-Hak Jeong ◽  
Ho-Jin Song

This paper presents a variable-gain amplifier (VGA) in the 68–78 GHz range. To reduce DC power consumption, the drain voltage was set to 0.5 V with competitive performance in the gain and the noise figure. High-Q shunt capacitors were employed at the gate terminal of the core transistors to move input matching points for easy matching with a compact transformer. The four stages amplifier fabricated in 40-nm bulk complementary metal oxide semiconductor (CMOS) showed a peak gain of 24.5 dB at 71.3 GHz and 3‑dB bandwidth of more than 10 GHz in 68–78 GHz range with approximately 4.8-mW power consumption per stage. Gate-bias control of the second stage in which feedback capacitances were neutralized with cross-coupled capacitors allowed us to vary the gain by around 21 dB in the operating frequency band. The noise figure was estimated to be better than 5.9 dB in the operating frequency band from the full electromagnetic (EM) simulation.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750075 ◽  
Author(s):  
Najam Muhammad Amin ◽  
Lianfeng Shen ◽  
Zhi-Gong Wang ◽  
Muhammad Ovais Akhter ◽  
Muhammad Tariq Afridi

This paper presents the design of a 60[Formula: see text]GHz-band LNA intended for the 63.72–65.88[Formula: see text]GHz frequency range (channel-4 of the 60[Formula: see text]GHz band). The LNA is designed in a 65-nm CMOS technology and the design methodology is based on a constant-current-density biasing scheme. Prior to designing the LNA, a detailed investigation into the transistor and passives performances at millimeter-wave (MMW) frequencies is carried out. It is shown that biasing the transistors for an optimum noise figure performance does not degrade their power gain significantly. Furthermore, three potential inductive transmission line candidates, based on coplanar waveguide (CPW) and microstrip line (MSL) structures, have been considered to realize the MMW interconnects. Electromagnetic (EM) simulations have been performed to design and compare the performances of these inductive lines. It is shown that the inductive quality factor of a CPW-based inductive transmission line ([Formula: see text] is more than 3.4 times higher than its MSL counterpart @ 65[Formula: see text]GHz. A CPW structure, with an optimized ground-equalizing metal strip density to achieve the highest inductive quality factor, is therefore a preferred choice for the design of MMW interconnects, compared to an MSL. The LNA achieves a measured forward gain of [Formula: see text][Formula: see text]dB with good input and output impedance matching of better than [Formula: see text][Formula: see text]dB in the desired frequency range. Covering a chip area of 1256[Formula: see text][Formula: see text]m[Formula: see text]m including the pads, the LNA dissipates a power of only 16.2[Formula: see text]mW.


2015 ◽  
Vol 643 ◽  
pp. 109-116
Author(s):  
Daiki Oki ◽  
Satoru Kawauchi ◽  
Cong Bing Li ◽  
Masataka Kamiyama ◽  
Seiichi Banba ◽  
...  

This paper presents a power-efficient noise-canceling technique based on the feed-forward amplifiers, considering a fundamental tradeoff between noise figure (NF) and power consumption in the design of wide-band amplifiers. By suppressing the input signal of the noise cancellation amplifier, the nonlinear effect on the amplifier can be reduced, as well as the power consumption can be smaller. Furthermore, as a lower gain of the noise-canceling sub-amplifier can be achieved simultaneously, further reduction of the power consumption becomes possible. The verification of the proposed technique is conducted with Spectre simulation using 90nm CMOS process.


2021 ◽  
Vol 14 (3) ◽  
pp. 112
Author(s):  
Kai Shi

We attempted to comprehensively decode the connectedness among the abbreviation of five emerging market countries (BRICS) stock markets between 1 August 2002 and 31 December 2019 not only in time domain but also in frequency domain. A continuously varying spillover index based on forecasting error variance decomposition within a generalized abbreviation of vector-autoregression (VAR) framework was computed. With the help of spectral representation, heterogeneous frequency responses to shocks were separated into frequency-specific spillovers in five different frequency bands to reveal differentiated linkages among BRICS markets. Rolling sample analyses were introduced to allow for multiple changes during the sample period. It is found that return spillovers dominated by the high frequency band (within 1 week) part declined with the drop of frequencies, while volatility spillovers dominated by the low frequency band (above 1 quarter) part grew with the decline in frequencies; the dynamics of spillovers were influenced by crucial systematic risk events, and some similarities implied in the spillover dynamics in different frequency bands were found. From the perspective of identifying systematic risk sources, China’s stock market and Russia’s stock market, respectively, played an influential role for return spillover and volatility spillover across BRICS markets.


2021 ◽  
pp. 147592172110188
Author(s):  
Zonglian Wang ◽  
Keqin Ding ◽  
Huilan Ren ◽  
Jianguo Ning

To gain an insight into the evolution of micro-cracks in concrete materials, a quantitative acoustic emission investigation on the damage process of concrete prisms subjected to three-point bending loading was performed. Each of the monitored acoustic emission signals was processed by a two-level wavelet packet decomposition into four different frequency bands (AA2, DA2, AD2, and DD2), and the energy coefficients R1, R2, R3, and R4 that parameterize their characteristic frequency bands were calculated. By analyzing variations in energy coefficients of the lowest frequency band (AA2), R1, and the energy coefficients of the highest frequency band (DD2), R4, the whole damage process was divided into three stages: crack initiation, crack growth, and crack coalescence. An inverse relationship between the frequency of the acoustic emission signal emitted by the propagating crack and the crack size in concrete materials was acquired based on the damage theory of brittle materials and the strain energy release theory. The statistical analysis results of the experimental data indicated that the average of R1 increased in turn, and the average of R4 correspondingly decreased in turn from Stage 1 to Stage 3. It revealed that the frequencies of acoustic emission signals decreased gradually with the evolution of the damage of concrete prisms, which is in a good agreement with the theoretical analysis result.


2013 ◽  
Vol 479-480 ◽  
pp. 1014-1017
Author(s):  
Yi Cheng Chang ◽  
Meng Ting Hsu ◽  
Yu Chang Hsieh

In this study, three stage ultra-wide-band CMOS low-noise amplifier (LNA) is presented. The UWB LNA is design in 0.18μm TSMC CMOS technique. The LNA input and output return loss are both less than-10dB, and achieved 10dB of average power gain, the minimum noise figure is 6.55dB, IIP3 is about-9.5dBm. It consumes 11mW from a 1.0-V supply voltage.


Sign in / Sign up

Export Citation Format

Share Document