Microbial Inactivation by Ultrasound in the Food Industry

Author(s):  
Eda Adal

Pasteurization is the most common processing method for microbial and enzyme inactivation to preserve foods. With this method, foods are exposed to high temperatures and there are disadvantages for many products: thermal treatments cause modifications of sensory attributes (for instance: flavour, colour, nutritional qualities). Now, another method can replace pasteurization: microbial inactivation by ultrasounds. It is a new alternative technology of food processing also called sonication, and it can be used coupled with pressure and/or heat. These techniques inactivate microorganisms in foods. They are effective and energy efficient to kill them, making the techniques promising for the food industry. In this chapter, the method of microbial inactivation by ultrasounds was explained, after that the applications in food industry for instance in milk, orange juice, wastewater, and whole liquid eggs were well-defined, and finally, the advantages, disadvantages, and the limitations of this method were examined.

Author(s):  
V. M. (Bala) Balasubramaniam

Consumers demand healthier fresh tasting foods without chemical preservatives. To address the need, food industry is exploring alternative preservation methods such as high pressure processing (HPP) and pulsed electric field processing. During HPP, the food material is subjected to elevated pressures (up to 900 MPa) with or without the addition of heat to achieve microbial inactivation with minimal damage to the food. One of the unique advantages of the technology is the ability to increase the temperature of the food samples instantaneously; this is attributed to the heat of compression, resulting from the rapid pressurization of the sample. Pulsed electric field (PEF) processing uses short bursts of electricity for microbial inactivation and causes minimal or no detrimental effect on food quality attributes. The process involves treating foods placed between electrodes by high voltage pulses in the order of 20–80 kV (usually for a couple of microseconds). PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf life. Pressure in combination with other antimicrobial agents, including CO2, has been investigated for juice processing. Both HPP and PEF are quite effective in inactivating harmful pathogens and vegetative bacteria at ambient temperatures. Both HPP and PEF do not present any unique issues for food processors concerning regulatory matters or labeling. The requirements are similar to traditional thermal pasteurization such as development of a Hazard Analysis Critical Control Point (HACCP) plan for juices and beverages. Examples of high pressure, pasteurized, value added products commercially available in the United States include smoothies, fruit juices, guacamole, ready meal components, oysters, ham, poultry products, and salsa. PEF technology is not yet widely utilized for commercial processing of food products in the United States. The presentation will provide a brief overview of HPP and PEF technology fundamentals, equipment choices for food processors, process economics, and commercialization status in the food industry, with emphasis on juice processing. Paper published with permission.


Author(s):  
Gaļina Zvaigzne ◽  
Daina Kārkliņa ◽  
Joerg-Thomas Moersel ◽  
Sasha Kuehn ◽  
Inta Krasnova ◽  
...  

Abstract Orange juices are an important source of bioactive compounds. Because of its unique combination of sensory attributes and nutritional value, orange juice is the world’s most popular fruit juice. Orange (Citrus sinensis) juice of Greek Navel variety was used in this study. The impact of Conventional Thermal Pasteurisation (94 °C/30') (CTP) and alternative Ultra-High Temperature (UHT) (130 °C/2') processing on bioactive compounds and antioxidant capacity changes of fresh Navel orange juice was investigated. Sensory attributes of processed juices were evaluated. Results showed that using technologies CTP and UHT orange juice Navel significantly changed vitamin C concentration in comparison with fresh orange juice. The highest concentration of antioxidants (vitamin C, total phenols, hesperidin and carotenoids) was observed in orange juice Navel produced by UHT technology. Sensory results indicated that characteristics of the orange juice obtained using UHT technology were more liked than the CTP heat treated juice. UHT technology emerges as an advantageous alternative process to preserve bioactive compounds in orange juice.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2535
Author(s):  
Jose Lucas Peñalver-Soto ◽  
Alberto Garre ◽  
Arantxa Aznar ◽  
Pablo S. Fernández ◽  
Jose A. Egea

In food processes, optimizing processing parameters is crucial to ensure food safety, maximize food quality, and minimize the formation of potentially toxigenic compounds. This research focuses on the simultaneous impacts that severe heat treatments applied to food may have on the formation of harmful chemicals and on microbiological safety. The case studies analysed consider the appearance/synthesis of acrylamide after a sterilization heat treatment for two different foods: pureed potato and prune juice, using Geobacillus stearothermophilus as an indicator. It presents two contradictory situations: on the one hand, the application of a high-temperature treatment to a low acid food with G. stearothermophilus spores causes their inactivation, reaching food safety and stability from a microbiological point of view. On the other hand, high temperatures favour the appearance of acrylamide. In this way, the two objectives (microbiological safety and acrylamide production) are opposed. In this work, we analyse the effects of high-temperature thermal treatments (isothermal conditions between 120 and 135 °C) in food from two perspectives: microbiological safety/stability and acrylamide production. After analysing both objectives simultaneously, it is concluded that, contrary to what is expected, heat treatments at higher temperatures result in lower acrylamide production for the same level of microbial inactivation. This is due to the different dynamics and sensitivities of the processes at high temperatures. These results, as well as the presented methodology, can be a basis of analysis for decision makers to design heat treatments that ensure food safety while minimizing the amount of acrylamide (or other harmful substances) produced.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 926 ◽  
Author(s):  
Hanán Issa-Issa ◽  
Marina Cano-Lamadrid ◽  
Ángel Calín-Sánchez ◽  
Aneta Wojdyło ◽  
Ángel. A. Carbonell-Barrachina

To increase the intake of fruits and vegetables—especially among young people—the food industry is trying to develop new, easy-to-eat and long-shelf-life products, such as smoothies. Nowadays, consumers are choosing their foods based not only on nutritional/functional properties (content of polyphenols, vitamins, minerals, among others), but also on sensory attributes. The aim of this study was to investigate the volatile composition by HS-SPME and the sensory profile by descriptive sensory analysis of novel smoothies prepared by blending fig, jujube or quince purée with pomegranate juices (cv. Mollar de Elche or Wonderful) at two ratios purée:juice (40:60 or 60:40). Twenty-three volatile compounds were identified by GC-MS and classified as alcohols, aldehydes, esters, furans, ketones, terpenes and terpenoids. Among volatile compounds, the five predominant ones in the studied smoothies were: (i) 5-HMF (30.6%); (ii) 3-hexen-1-ol (9.87%); (iii) hexanal (9.43%); (iv) 1-hexanol (8.54%); and (v) 3-octanone (7.67%). Fig smoothies were sweet and had flavor and volatiles related to fig, pomegranate, and grape. While jujube products were bitter and had jujube and pear notes. Finally, quince smoothies were consistent, sour and had quince, apple and floral notes. Thus, the type of fruit purée used clearly determined the flavor of the final product. The smoothies prepared with Mollar de Elche pomegranate juice were characterized by having high intensity of pear odor/aroma and consistency, and the Wonderful smoothies were characterized by lower consistency and more intense pomegranate aroma and sourness.


2006 ◽  
Vol 73 (4) ◽  
pp. 454-463 ◽  
Author(s):  
Laëtitia Picart ◽  
Maryse Thiebaud ◽  
Malika René ◽  
Joseph Pierre Guiraud ◽  
Jean Claude Cheftel ◽  
...  

Raw whole milk of high microbial quality ([les ]4×104 cfu/ml) was processed using a ~15 l/h homogeniser with a high pressure (HP) valve immediately followed by cooling heat exchangers. The effects of homogenisation between 100 and 300 MPa (HP valve) with an initial milk temperature Tin=4 °C or 24 °C was investigated on the inactivation of: (i) endogenous alkaline phosphatase (ALP); (ii) endogenous milk flora and (iii) two Gram positive (Listeria innocua and Micrococcus luteus) and one Gram negative (Pseudomonas fluorescens) strains inoculated into milk. Temperatures T1 and T2 measured before and immediately after the HP valve, and fat globule size distributions were also determined. ALP activity slightly decreased after homogenisation above 250 MPa when Tin=4 °C (corresponding T2>58 °C), but markedly decreased above 200 MPa when Tin=24 °C (T2>60 °C). In contrast to inactivation induced by continuous short-time thermal treatments, ALP inactivation induced by HP homogenisation was clearly due to mechanical forces (shear, cavitation and/or impact) in the HP valve and not to the short ([Lt ]1 s) residence time at temperature T2 in the same valve. Inactivation of the three exogenous microorganisms led to similar conclusions. Homogenisation at 250 MPa or 300 MPa (Tin=24 °C) induced a 2–3 log cycle reduction of the total endogenous milk flora and a 1·5–1·8 log cycle reduction of inoculated List. innocua. Higher reduction ratios (2–4 log cycles) were obtained for the two other microorganisms. The highest levels of ALP inactivation corresponded to the highest extents of microbial reduction. Running the milk twice or three times through the homogeniser (recycling), keeping temperature T1≈29 °C and pressure=200 MPa, increased homogenisation efficiency.


2013 ◽  
Vol 371 ◽  
pp. 270-274 ◽  
Author(s):  
Stefan Lucian Toma ◽  
Diana Antonia Gheorghiu ◽  
Steluta Radu ◽  
Costică Bejinariu

The physic-chemical and mechanical properties of steel deposits obtained by thermal spraying depend on technological parameters of the spraying process. Generally, wear resistance of the deposits depends on the degree of porosity and the adhesion of the layer to the substrate. In the case of the deposits obtained by spraying, studies have shown that between deposited layer (SD) and substrate (S) there are the following types of adhesions: mechanical, metallurgical, superficial, physical and diffusive. Each type of adherence, enumerated above, works through a well-defined mechanism so that it can be said that the adhesion of the obtained deposits by thermal spray is a sum of mechanisms which interacting. How these mechanisms interact, as well the percentage of the influence is determined by: operating parameters, by the deposit material and thermal treatments after the deposit obtaining. This paper proposes to determine the influence of thermal treatment on adherence of 60T deposits obtained by thermal spraying in electric arc- as a thermal processing method after metallization. The assessment of adherence deposit 60T - in two ways, according to with EN 582 and DIN 27201/2005 in conjunction with the investigations of electron microscopy (SEM), XRD analysis, and image analysis performed at both the zone: Coating - Interface - Substrate (CIS) has revealed the presence of diffusion and the structural constituents. The graphs of adherence variation for 60T deposits with the concentration gradient of the alloying elements of the 60T layer respectively of adherence layer (75B) obtained experimentally by investigations carried out on the substrate have demonstrated the role of the secondary thermal treatment on the deposit adherence.


2021 ◽  
Vol 13 (2) ◽  
pp. 49
Author(s):  
Mailson Gonçalves Gregório ◽  
Alícia Nayana dos Santos Lima de Brito ◽  
Nágela Maria Henrique Mascarenhas ◽  
Moisés Sesion de Medeiros Neto ◽  
Luís Paulo Firmino Romão da Silva ◽  
...  

The search for nutritious and practical foods during consumption is one of the challenges of the food industry and Greek yogurt with added fruit meets these needs. Therefore, the aim was to prepare Greek yogurt with the addition of different concentrations of carambola jam, as well as to analyze its microbiological quality and its sensory acceptance. Three formulations of Greek type yoghurts were prepared with the addition of different concentrations of star fruit jam F1 (10), F2 (15) and F3 (20)%, respectively, where they were subjected to microbiological analysis (coliforms at 45 °C, Estaf. coag.positiva (UFC/g) and Salmonella sp.) and sensory analysis, being analyzed the index of sensory acceptance and the intention to buy. The three formulations produced showed excellent microbiological results, that is, all the results obtained are within the standards established by current legislation. With regard to sensory analysis, the formulation F1 (10%) presented the highest acceptance rate in all sensory attributes, with higher values of AI above 85% and with purchase intention close to “certainly would buy the product”. Therefore, the yogurts elaborated in this research have the ideal microbiological safety for consumption, without compromising the consumer’s health and with excellent sensory acceptance


Sign in / Sign up

Export Citation Format

Share Document