Influence of Zinc Oxide Nanoparticles on the Optical, Dielectric and Electromagnetic Interference Shielding Performance of Polystyrene Films

Author(s):  
B. J. Madhu ◽  
Mohammed Irfan ◽  
A. Manjunath ◽  
N. P. Divya ◽  
S. S. Mahesh ◽  
...  

In the present work, Zinc oxide (ZnO) nanoparticles are synthesized using solvothermal technique. Polystyrene-ZnO (PS/ZnO) nanocomposite films are synthesized by solution casting procedure. PS/ZnO films are analyzed by XRD, FTIR and UV-Vis spectroscopic techniques. The addition of ZnO into the PS film is found to decrease the optical band gap (OBG) from 4.07 eV to 1.86 eV. Frequency dependence of dielectric constant (ε′), loss tangent (tanδ), ac conductivity (σac) and electromagnetic (EM) interference shielding effectiveness (SE) studies have been undertaken on the pure PS and PS/ZnO films. Insertion of ZnO into pure PS polymer matrix is found to enhance ε′, tanδ, σac, and SE considerably. The ε′ and tanδ were reduced with an enhancement in the frequency. σac of PS/ZnO nanocomposites was enhanced with rise in frequency and electrical conduction process in PS/ZnO film is in agreement with an electron-hopping model. EM interference SE is reduced with rise in the frequency. PS/ZnO films were proven as a favorable functional substance for the absorbing of EM waves at lower frequencies.

Author(s):  
B. J. Madhu ◽  
Mohammed Irfan ◽  
A. Manjunath ◽  
N. P. Divya ◽  
S. S. Mahesh ◽  
...  

In the present work, Zinc oxide (ZnO) nanoparticles are synthesized using solvothermal technique. Polystyrene-ZnO (PS/ZnO) nanocomposite films are synthesized by solution casting procedure. PS/ZnO films are analyzed by XRD, FTIR and UV-Vis spectroscopic techniques. The addition of ZnO into the PS film is found to decrease the optical band gap (OBG) from 4.07 eV to 1.86 eV. Frequency dependence of dielectric constant (ε′), loss tangent (tanδ), ac conductivity (σac) and electromagnetic (EM) interference shielding effectiveness (SE) studies have been undertaken on the pure PS and PS/ZnO films. Insertion of ZnO into pure PS polymer matrix is found to enhance ε′, tanδ, σac, and SE considerably. The ε′ and tanδ were reduced with an enhancement in the frequency. σac of PS/ZnO nanocomposites was enhanced with rise in frequency and electrical conduction process in PS/ZnO film is in agreement with an electron-hopping model. EM interference SE is reduced with rise in the frequency. PS/ZnO films were proven as a favorable functional substance for the absorbing of EM waves at lower frequencies.


2007 ◽  
Vol 336-338 ◽  
pp. 2221-2223
Author(s):  
Fang Peng ◽  
Xiao Min Li ◽  
Xiang Dong Gao

Zinc oxide films have been deposited on ITO/glass substrate by a two-step electrodeposition method from zinc nitrate aqueous solution. The two-step electrodeposition process included a potentiostatic pre-deposition and a galvanostatic deposition. Obtained ZnO film possesses high c-axis preferential orientation, smooth and compact morphology, high transmittance in the visible band, and optical band gap of 3.43eV. Compared with the film prepared by direct galvanostatic deposition, the crystalline quality and optical properties of ZnO films were significantly improved.


2021 ◽  
pp. 095400832110645
Author(s):  
Karim Benzaoui ◽  
Achour Ales ◽  
Ahmed Mekki ◽  
Abdelhalim Zaoui ◽  
Boudjemaa Bouaouina ◽  
...  

The conventional electromagnetic interference (EMI) shielding materials are being gradually replaced by a new generation of supported conducting polymer composites (CPC) films due to their many advantages. This work presents a contribution on the effects of silane surface–modified flexible polypyrrole-silver nanocomposite films on the electromagnetic interference shielding effectiveness (EMI-SE). Thus, the UV-polymerization was used to in-situ deposit the PPy-Ag on the biaxial oriented polyethylene terephthalate (BOPET) flexible substrates whose surfaces were treated by 3-aminopropyltrimethoxysilane (APTMS). X-ray Photoelectron Spectroscopy (XPS) analyzes confirmed the APTMS grafting procedure. Structural, morphological, thermal, and electrical characteristics of the prepared films were correlated to the effect of substrate surface treatment. Thereafter, EMI-SE measurements of the elaborated films were carried out as per ASTM D4935 standard for a wide frequency band extending from 50 MHz to 18 GHz. The obtained results confirmed that the APTMS-treated BOPET film exhibit higher EMI shielding performance and better electrical characteristics compared to the untreated film. In fact, a 32% enhancement of EMI-SE was noted for the treated films compared to the untreated ones. Overall, these results put forward the role played by the surface treatment in strengthening the position of flexible PPy-Ag supported films as high-performance materials in electronic devices and electromagnetic interference shielding applications.


2011 ◽  
Vol 239-242 ◽  
pp. 777-780
Author(s):  
Ting Zhi Liu ◽  
Shu Wang Duo ◽  
C Y Hu ◽  
C B Li

ZnO films were deposited on nanostructured Al (n-Al) /glass substrate by RF magnetron sputtering. The results shows that the relation (I (002) /I (100) ≈ I annealed (002)/I annealed (100) ≈1.1) shows the rough n-Al surface is suitable for the growth of a-axis orientation. Meanwhile, the influences of substrate roughness, crystallinity and (101) plane of ZnO film deposited on n-Al layer have been discussed. XPS implies more oxygen atoms are bound to Aluminum atoms, which result in the increase of high metallic Zn in the film.


2019 ◽  
Vol 31 (4) ◽  
pp. 487-494 ◽  
Author(s):  
Xiaohong Yuan ◽  
Qufu Wei ◽  
Huizhen Ke ◽  
Zujian Huang ◽  
Dongsheng Chen

Purpose The purpose of this paper is to prepare structural colors of fabrics coated with Silver/Zinc Oxide (Ag/ZnO) composite films by magnetron sputtering and analyze the relationship between the colors and the thickness of Zinc Oxide (ZnO) film in Ag/ZnO composite film and the photocatalytic property of the fabrics coated with Ag/ZnO composite film. Design/methodology/approach Ag/ZnO composite films deposited on polyester fabrics were prepared by magnetron sputtering technology. The structural colors of textiles coated with Ag/ZnO composite films and the relationship between the colors and Ag/ZnO composite films were analyzed, and the photocatalytic property of Ag/ZnO composite films was also discussed. Findings The results indicated that the colors varied with the thicknesses of the ZnO film in Ag/ZnO composite films. The reactive sputtering time of ZnO film was 5, 8, 10 and 14 min, respectively, and the colors of the corresponding fabrics were purple, blue, blue-green and yellow. Meanwhile, the polyester fabrics coated with Ag/ZnO composite films showed the excellent photocatalytic properties, and silver (Ag) films deposited under the ZnO films in Ag/ZnO composite films could also improve the photocatalytic activities of ZnO films, and the formaldehyde degradation rates was 77.5%, which was higher than the 69.9% for the fabrics coated only with the ZnO film. Originality/value The polyester fabrics coated with Ag/ZnO composite films not only created various structural colors using change the thicknesses of the ZnO film, but also achieved the multifuctionality, which will have a broad application prospect in textile fields.


Author(s):  
T. Shiyani ◽  
I. Banerjee ◽  
Santosh K. Mahapatra ◽  
Asim K. Ray

AbstractPhotoelectrochemical properties have been investigated for flexible photoelectrodes containing 310 nm thick ZnO film on spin-coated ITO/PET. The high crystalline structure of ZnO was studied using x-ray diffraction pattern. A value of 3.4 eV has been estimated for optical band gap from its absorption spectra. The flexible ZnO photoelectrode was demonstrated to generate photoelectrochemical current. The photocurrents are enhanced by 4% whereas flat-band potential is shifted by 8 V due to the illumination. Values of 1.022 and 0.714 AW−1 were found to be for photo switching and photoresponsivity, respectively. ZnO/ITO/PET can be used as a substrate for making flexible hybrid PEC devices to generate solar power and solar fuels.


2013 ◽  
Vol 641-642 ◽  
pp. 547-550 ◽  
Author(s):  
Ying Xiang Yang ◽  
Hong Lin Tan ◽  
Cheng Lin Ni ◽  
Chao Xiang

Un-doped and (Cu, Al)-doped ZnO thin films were prepared by sol-gel spin coating technique on glass substrate. The effect of(Cu, Al)incorporation on the structural, morphological and optical properties of the Zinc oxide (ZnO)film was investigated by means of X-ray diffraction, scanning electron microscopy and UV-vis spectrophotometer. It has been found that the grain sizes, Optical band gap and the preferred orientation growth of (002) plane were decreased with increasing of (Cu, Al) dopants amount in ZnO films.


2021 ◽  
Author(s):  
Visweswaran S ◽  
R. Venkatachalapathy ◽  
M. Haris ◽  
R. Murugesan

Abstract ZnO thin film deposited on the glass substrate at various substrate temperature by spray technique using perfume atomizer. The deposited ZnO thin films are annealed at 450ºC. The deposited films are highly transparent and adhered to the substrate. The structure and microstructural, morphological, compositional, optical and luminescent characteristics were studied by X-ray diffraction (XRD), Raman, Field emission scanning electron microscope (FE-SEM with EDX), Atomic force microscope (AFM), Ultra violet visible spectrophotometer (UV-Vis) and photoluminescence spectroscopic techniques. The crystalline nature of annealed film were confirmed from XRD and the shows preferred orientation along (1 0 1) plane. At higher substrate temperature, reorientation of planes was seen. The spherical shaped grains are observed from morphological studies. The roughness of ZnO film, one of the key parameter obtained from AFM, increases with substrate temperature. The high transparency of about 80% in visible region are obtained for ZnO film with band gap ranging from 3.24 – 3.19 eV. The presence of defects in ZnO films are identified from PL bands. The electronic vibrations in ZnO film were understood from Raman spectra. The weak ferromagnetic behavior at room temperature is observed and exchange interactions stemming from oxygen vacancy produce BMP and subject to RTFM in ZnO.


2003 ◽  
Vol 18 (10) ◽  
pp. 2464-2472 ◽  
Author(s):  
C. W. Ong ◽  
D. G. Zong ◽  
M. Aravind ◽  
C. L. Choy ◽  
D. R. Lu

Double-layered ZnO/silicon nitride microbridges were fabricated for microbridge tests. In a test, a load was applied to the center of the microbridge specimen by using a microwedge tip, where the displacement was recorded as a function of load until the specimen broke. The silicon nitride layer in the structure served to enhance the robustness of the specimen. By fitting the data to a theory, the elastic modulus, residual stress, and tensile strength of the ZnO film were found to be 137 ± 18 GPa, −0.041 ± 0.02 GPa, and 0.412 ± 0.05 GPa, respectively. The analysis required the elastic modulus, internal stress, and tensile strength of the silicon nitride layer. They were measured separately by microbridge tests on single-layered silicon nitride microbridges. The measured tensile strength of the ZnO films represents the maximum tolerable tensile stress that the films can sustain when they are used as the functional component in devices.


MRS Advances ◽  
2019 ◽  
Vol 4 (16) ◽  
pp. 921-928
Author(s):  
S.F.U. Farhad ◽  
N.I. Tanvir ◽  
M.S. Bashar ◽  
M. Sultana

ABSTRACTOriented ZnO seed layers were deposited by three different techniques, namely, simple drop casting (DC), sol-gel derived dip coating (DPC) and spin coating of ball-milled ZnO powder solution(BMD) for the subsequent growth of vertically aligned ZnO nanorods along the substrate normal. X-ray diffraction (XRD) analyses revealed that ZnO(DC) seed layer exhibit the highest preferential c-axis texturing among the ZnO seed layers synthesized by different techniques. The Scanning Electron Microscopy (SEM) analysis evident that the morphology of ZnO seed layer surface is compact and coherently carpets the underlying substrate. ZnO nanorods(NRs) were then grown by hydrothermal method atop the ZnO seeded and non-seeded substrates grown by different techniques to elucidate the best ZnO seed layer promoting well-aligned ZnO Nanorods. The presence of c-axis oriented ZnO(DC) seeding layers was found to significantly affect the surface morphology and crystallographic orientation of the resultant ZnO NRs films. The optical band gap of ZnO(DC) seed and ZnO NRs were estimated to be 3.30 eV and in the range of 3.18 – 3.25 eV respectively by using UV-VIS-NIR diffuse reflection spectroscopy. The room temperature photoluminescence analyses revealed that nanostructured ZnO films exhibit a sharp near-band-edge luminescence peak at ∼380 nm consistent with the estimated optical band gap and the ZnO nanorod arrays are notably free from defect-related green-yellow emission peaks.


Sign in / Sign up

Export Citation Format

Share Document