Study on the Industrial Wastewater Treatment by Modified Bentonite

2012 ◽  
Vol 182-183 ◽  
pp. 323-327 ◽  
Author(s):  
Hong Shao ◽  
Zhi Fang Zhang ◽  
Ning Cao

The natural bentonite as raw material, chitosan as a modifier to prepare chitosan modified bentonite. The use of modified bentonite, each dealing with a high concentration of COD monosodium glutamate (MSG)wastewater and coking wastewater .The optimal conditions: mixing time : 10 ~ 12 min;centrifugation time :25 ~ 30min; PH: 8.5 ~ 9.5; dosage: 10~14g / L. The results showed that the treatment of modified bentonite is better than the bentonite and chitosan. The COD removal rate of MSG wastewater and coking wastewater were 60.1% and 82.3%. So the treatment of coking wastewater is efficiency.. By scanning electron microscopy, surface area and X-ray diffraction analysis shows that modification does not change the basic structure of the bentonite only increased the specific surface area of bentonite, and the adsorption capacity of pollutants.

2013 ◽  
Vol 634-638 ◽  
pp. 286-291 ◽  
Author(s):  
Hong Shao ◽  
Wei Gao ◽  
Di Zhang ◽  
Zi Ru Liu ◽  
Wen Ze Li

Ammonium molybdate modified bentonite was prepared from bentonite using ammonium molybdate as modified agent, which was used to remove several industrial effluents. It is used in the pretreatment of monosodium glutamate wastewater, slaughtering wastewater and beer wastewater which have high concentration of COD. The suitable reaction condition is ensured and the treatment effects for the treated effluents are compared by ammonium Molybdate-modified Bentonite. The result shows that the ammonium molybdate-modified bentonite is better than other flocculants. The COD removal rate of monosodium glutamate wastewater, slaughtering wastewater and beer wastewater could reach 55.40%, 96.32%, 93.23% respectively. The treatment of slaughtering wastewater is the best and all treated effects meet the pretreatment requirement. Ammonium molybdate-modified bentonite is applied to several industrial effluents in different business. It is a new type flocculant with good flocculation effect and wide application.


2011 ◽  
Vol 695 ◽  
pp. 553-556
Author(s):  
Yu Hong Tian ◽  
Xin Zhe Lan ◽  
Qiu Li Zhang ◽  
Juan Qin Xue ◽  
Yong Hui Song ◽  
...  

The low-cost blue coke industrial by-product, blue coke powder was used as raw material for the production of porous carbons adsorbent by steam activating at temperature of 800°C under the atmosphere of N2 for 60 minutes. The specific surface area and pore properties of the adsorbent were characterized by using N2 adsorption-desorption isotherms. Furthermore, the adsorption effects of the adsorbent for ammonia nitrogen in coking wastewater were investigated in terms of particle size, dosage of absorbent and adsorption time. The results show that the specific surface area is 620.94m2/g, the total pore volume is 0.4442cm3/g and the average mesopore size is 4.5808nm, the adsorbent possesses predominant mesoporous structures. In aeration, the removal rate of ammonia nitrogen can reach to 39.5% under the conditions of the ammonia nitrogen concentration of 625mg/L, the dosage of adsorbent 10g/L at the adsorption time of 60 minutes.


2020 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
Guozhen Zhang ◽  
Xingxing Huang ◽  
Jinye Ma ◽  
Fuping Wu ◽  
Tianhong Zhou

Electrochemical oxidation technology is an effective technique to treat high-concentration wastewater, which can directly oxidize refractory pollutants into simple inorganic compounds such as H2O and CO2. In this work, two-dimensionally stable anodes, Ti/RuO2-IrO2-SnO2, have been developed in order to degrade organic pollutants from pharmaceutical wastewater. Characterization by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) showed that the oxide coating was successfully fabricated on the Ti plate surface. Electrocatalytic oxidation conditions of high concentration pharmaceutical wastewater was discussed and optimized, and the best results showed that the COD removal rate was 95.92% with the energy consumption was 58.09 kW·h/kgCOD under the electrode distance of 3 cm, current density of 8 mA/cm2, initial pH of 2, and air flow of 18 L/min.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Manjing Lu ◽  
Jiaqi Wang ◽  
Yuzhong Wang ◽  
Zhengguang He

Chemical synthetic pharmaceutical wastewater has characteristics of high concentration, high toxicity and poor biodegradability, so it is difficult to directly biodegrade. We used acid modified attapulgite (ATP) supported Fe-Mn-Cu polymetallic oxide as catalyst for multi-phase Fenton-like ultraviolet photocatalytic oxidation (photo-Fenton) treatment with actual chemical synthetic pharmaceutical wastewater as the treatment object. The results showed that at the initial pH of 2.0, light distance of 20 cm, and catalyst dosage and hydrogen peroxide concentration of 10.0 g/L and 0.5 mol/L respectively, the COD removal rate of wastewater reached 65% and BOD5/COD increased to 0.387 when the reaction lasted for 180 min. The results of gas chromatography-mass spectrometry (GC-MS) indicated that Fenton-like reaction with Fe-Mn-Cu@ATP had good catalytic potential and significant synergistic effect, and could remove almost all heterocycle compounds well. 3D-EEM (3D electron microscope) fluorescence spectra showed that the fluorescence intensity decreased significantly during catalytic degradation, and the UV humus-like and fulvic acid were effectively removed. The degradation efficiency of the nanocomposite only decreased by 5.8% after repeated use for 6 cycles. It seems appropriate to use this process as a pre-treatment for actual pharmaceutical wastewater to facilitate further biological treatment.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 335-343 ◽  
Author(s):  
M. Inizan ◽  
A. Freval ◽  
J. Cigana ◽  
J. Meinhold

Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.


2017 ◽  
Vol 76 (3) ◽  
pp. 555-566 ◽  
Author(s):  
Lihui Gao ◽  
Hong Wen ◽  
Quanzhi Tian ◽  
Yongtian Wang ◽  
Guosheng Li

Coking coal, the raw material of a coke plant, was applied to the adsorption of coking wastewater. In this study, coking coal was directly treated with sulfuric acid to improve its surface properties and adsorption ability. Acid treatment was carried out at various concentrations, by varying from 0.001 to 1 mol/L. The samples were characterized by ash content analysis, scanning electron microscope (SEM), N2 adsorption-desorption analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), wettability analysis, and zeta potential analysis. These results demonstrated that H+ could react with inorganic minerals, which resulted in a significant variation of the chemical composition and the structure of coal surface. Furthermore, both the ash content and the surface content of O = C-O, C = O and C-O groups declined gradually as the concentration of sulfuric acid increased, while the surface area and pore volume of micropore, the lipophilic and hydrophobic properties, and zeta potential magnitude increased, resulting in enhanced hydrophobic and Van der Waals' forces between the fine coal and organic pollutants. Characterization modification showed a better performance in adsorption, the removal rate enhanced from 23% to 42% after treated by 1 mol/L sulfuric acid. It was concluded that the acid activation modified the lipophilic and hydrophobic properties, the surface charge properties, surface area and pore volume, the content of oxygen functional groups, all of which could be potentially useful in wastewater adsorption.


2014 ◽  
Vol 1073-1076 ◽  
pp. 941-948
Author(s):  
Li Li Wang ◽  
Qian Yang

The research in this paper focuses on improving the COD removal rate of the coking wastewater and the NH3-N removal rate and thus diversifying measures to dispose microbial floras in wastewater from the coal chemical industry. The means of adding nutrients, acid treatment and coagulation sedimentation react synergistically to dispose the organic contaminants in the coking wastewater. We attempted to combine Saccharomyces cerevisiae, Torula yeast, tropical Candida mycoderma, etc. to exploit the respective advantages to the full and improve the disposal effect. According to the COD sample (27000-30000) and NH3-N (2500-3000) offered by the client company, the COD removal rate ranged from 24.2% to 31.8% in the mixed experiment group of Saccharomyces cerevisiae and Torula yeast, with NH3-N removal rate from 63.5% to 69.6%. Obviously, the NH3-N removal rate produced good effect. Meanwhile, the COD removal rate ranged form 35.3% to 41.8% in the experiment group only adjusting PH value and the NH3-N removal rate ranged from 40.2% to 50.2%. It is obvious that NH3-N removal rate is influenced by the amount of bacterial strain.


2021 ◽  
Vol 40 (2) ◽  
pp. 101-114
Author(s):  
Muwafaq Hussein Al Lami ◽  
Michael John Whelan ◽  
Arnoud Boom ◽  
David Malcolm Harper

Abstract Laboratory experiments were conducted under controlled conditions to quantify the potential of microbial transformation associated with floating matrix of floating treatment wetland (FTW) in ammonia removal and nitrification kinetics. The effect of different design parameters on ammonia removal from synthetic medium was investigated to optimize system performance. Effects of surface area of mat material, range of ammonia concentrations, and aeration on ammonia removal kinetics were studied using microcosm systems. A simple dynamics model of mineral nitrogen transformation was used as a framework for interpreting the experimental results. The results revealed that ammonia removal was enhanced in FTWs, and the magnitude of removal was controlled by the design factors examined. Removal by nitrification was directly proportional to mat surface area. The higher ammonia removal efficiency was caused by a larger surface area, which could support the growth of more microbes. Removal rate constants for treatments were 0.011, 0.015, 0.026, 0.035, and 0.033 day–1 for T1, T2, T3, T4, and T5, respectively. There was also a clear inhibitory effect of NH3 on second-stage nitrification manifested as low production of NO3–. Quantitative index of optimized knit/calibrated knit indicated high inhibition effects of NH3 at high concentration of total ammonia (60 mg N L–1). There was no major effect of oxygen saturation on NHx removal using aerated and nonaerated conditions. Better mechanistic understanding of the fundamental processes operating in FTWs should provide the basis for improving FTW design and efficacy.


2011 ◽  
Vol 287-290 ◽  
pp. 1856-1859
Author(s):  
Hong Shao ◽  
Di Zhang

In the treatment of wastewater, the Fe- Ti Modified Bentonite was prepared as a new type of absorbing material which raw material was sodium bentonite. The Fe- Ti Modified Bentonite was used in the simulation wastewater which included Cr6+ and organic matter. The best adsorption condition was ensured by the pH value, the dosing quantity and the absorption time. The results of these experimental dates showed that the Fe- Ti Modified Bentonite had an excellent absorption performance and was much better than the sodium bentonite. The removal rate of Cr6+ and COD were 98.56% and 78.23% respectively if the pH value was 3, the dosing quantity was 10 g/L , the absorption time was 30 minutes. The results also showed that the distance of the modified bentonite was changed because the cross-linking agent entered the layers structure. That was why the absorption performance of Fe- Ti Modified Bentonite was improved.


2017 ◽  
Vol 20 (1) ◽  
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

AbstractWet oxidation of an industrial pharmaceutical wastewater with high concentration organic pollutants using hydrogen peroxide as an oxidant was investigated. Experiments were performed in a batch reactor to discuss the effects of reaction temperature, time, the hydrogen peroxide amount and catalyst with COD removal rate as an evaluation index. Results show that the highest COD removal rate, 81.6 %, was achieved at 240 ºC for 60 min with the addition of H


Sign in / Sign up

Export Citation Format

Share Document