Vibration Analysis for Pigging of Suspension Pipe Bridge

2012 ◽  
Vol 201-202 ◽  
pp. 669-672 ◽  
Author(s):  
Wen Ming Wang ◽  
Shi Min Zhang ◽  
Shang Na Song ◽  
Yin Li

Suspension pipe bridge is the key part of oil and gas pipeline system. Liquid loading during the pigging process will cause strong dynamic load of impact, thus the stability of structure will be destroyed. Paper establishes the pipeline pigging model suffered by the stress, analyzes the stress and vibration equation of the pigging pipeline. With the dynamic finite element simulation by the method of variable load, paper analyzes the vibration numeric of the pigging pipeline when the pig goes through the pipeline. The analysis of this paper provides the technical support and theoretical basis for pigging work.

2013 ◽  
Vol 353-356 ◽  
pp. 1379-1385
Author(s):  
Ming Zhang ◽  
Shao Xin Zhang ◽  
Qiang Yang

Salt rock is now being used widely as storage vault of oil and gas. However, the rheological properties of salt rock have significant influence on the stability of salt caverns and, in particular, induce the reduction of storage volumes. Therefore, the classical Nishihara model is used to describe the rheology of salt rock and incorporated into the finite element simulation firstly. Then the volume shrinkage is calculated for two typical simplified models with single cavern and double caverns. The results show that the storage volume of salt cavern decreases with the internal pressure and increases with service time for either single-cavern model or double-cavern model, which remains unchanged though the volume shrinkage of one cavern is influenced by others.


2021 ◽  
pp. 73-77
Author(s):  
D. LOLOV ◽  
◽  
S. LILKOVA-MARKOVA ◽  
V. I. BALABANOV

The article indicates that pipes with a liquid fl owing through them are one of the most common elements in various fields of industry. Pipelines in oil and gas and a number of other industries have valves and connections that can be modeled as concentrated masses. It is very important to consider their impact when investigating the dynamic behavior of pipelines. Developing fluctuations are the subject of research by many scientists. The article investigates a pipe with a static scheme of a beam freely lying on the supports with concentrated dampers. The stability of the system consisting of a pipe with concentrated dampers and a liquid fl owing through it is investigated. The spectral Galerkin method is used to determine the critical fl uid velocity. On the basis of theoretical studies, it has been established that a pipeline system with dampers loses its stability at 1.26 times lower fl uid fl ow rate (Vav = 122. 67, m/s) than in the case without dampers (Vav = 155 m/s).


2021 ◽  
pp. 014459872098361
Author(s):  
Yanqiu Wang ◽  
Zhengxin Sun ◽  
Pengtai Li ◽  
Zhiwei Zhu

This paper analyzes the small cosmopolitan and stability of the industrial coupling symbiotic network of eco-industrial parks of oil and gas resource-based cities. Taking Daqing A Ecological Industrial Park as an example, we constructed the characteristic index system and calculated the topological parameters such as the agglomeration coefficient and the average shortest path length of the industrial coupling symbiotic network. Based on the complex network theory we analyzed the characteristics of the scaled world, constructed the adjacency matrix of material and information transfers between enterprises, drew the network topology diagram. We simulated the system analysis and analyzed the stability of the industrial coupling symbiotic network of the eco-industrial park using the network efficiency and node load and maximum connected subgraph. The analysis results are as follows: the small world degree δ of Daqing A Eco-industrial Park is 0.891, which indicates that the industrial coupled symbiotic network has strong small world characteristics; the average path is 1.268, and the agglomeration coefficient is 0.631. The probability of edge connection between two nodes in a symbiotic network is 63.1%, which has a relatively high degree of aggregation, indicating that energy and material exchanges are frequent among all enterprises in the network, the degree of network aggregation is high, and the dependence between nodes is high; when the tolerance parameter is 0 to 0.3, the network efficiency and the maximum connected subgraphs show a sharp change trend, indicating that the topology of the industrial coupling symbiotic network of the eco-industrial park changes drastically when the network is subjected to deliberate attacks. It is easy to cause the breakage of material flow and energy flow in the industrial park, which leads to the decline of the stability of the industrial coupling symbiotic network of the eco-industrial park.


Author(s):  
Mohadese Jahanian ◽  
Amin Ramezani ◽  
Ali Moarefianpour ◽  
Mahdi Aliari Shouredeli

One of the most significant systems that can be expressed by partial differential equations (PDEs) is the transmission pipeline system. To avoid the accidents that originated from oil and gas pipeline leakage, the exact location and quantity of leakage are required to be recognized. The designed goal is a leakage diagnosis based on the system model and the use of real data provided by transmission line systems. Nonlinear equations of the system have been extracted employing continuity and momentum equations. In this paper, the extended Kalman filter (EKF) is used to detect and locate the leakage and to attenuate the negative effects of measurement and process noises. Besides, a robust extended Kalman filter (REKF) is applied to compensate for the effect of parameter uncertainty. The quantity and the location of the occurred leakage are estimated along the pipeline. Simulation results show that REKF has better estimations of the leak and its location as compared with that of EKF. This filter is robust against process noise, measurement noise, parameter uncertainties, and guarantees a higher limit for the covariance of state estimation error as well. It is remarkable that simulation results are evaluated by OLGA software.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


Transport ◽  
2009 ◽  
Vol 24 (1) ◽  
pp. 54-57 ◽  
Author(s):  
Vytautas Paulauskas

Single point mooring (SPM) is used when typical port facilities cannot be applied. Offshore platforms and terminals producing oil and gas are the places where SPM can be employed. Accidents with SPM equipment and ships occurring during loading or unloading operations are very dangerous and may cause serious losses due to the high prices of tankers and facilities and because of polluting the environment with poisonous materials. Any possibilities of decreasing risk and increasing safety are very important. This paper presents the analysis of dangerous situations with tankers and SPM, discusses theoretical basis for study and makes practical calculations and recommendations on decreasing accidence probability during loading operations.


2013 ◽  
Vol 380-384 ◽  
pp. 1725-1728
Author(s):  
Yang Hu ◽  
Huai Yu Kang

In this paper, we Research on Propagation Numerical Simulation and damage effect of Blast Shock Waves in Subway Station by using LS-DYNA dynamic finite element calculation program , the results reproduce the formation process of the explosive flow field, and analysis the shock wave waveform, attenuation and walking pattern, provides the theoretical basis for further experimental study.


2013 ◽  
Vol 680 ◽  
pp. 410-416 ◽  
Author(s):  
Jun Ming Wang ◽  
Fu Yuan Tong ◽  
Xiao Xue Li

By simplifying the geometric shape of abrasive grain in a cone-shape, the authors conduct the 3D dynamic finite element simulation on profile grinding with axial feed by single abrasive grain using deform-3D software. Analysis is made on the influence upon the grinding forces in case of the same grinding speed, the same grinding depth and the same friction factor between wheel and workpiece at different axial feed. The results show that the normal force and the tangential force increase with the increase of axial feed, but the axial force decreases with the axial feed.


2021 ◽  
Author(s):  
P. Merit Ekeregbe

Abstract Saturation logging tool is one key tool that has been successfully used in the Oil and Gas Industry. As important as the tool is, it should not be mistaken for a decision tool, rather it is a tool that aids decision making. Because the tool aids decision making, the decision process must be undertaken by interdisciplinary team of Engineers with historical knowledge of the tool and the performance trend of the candidate well and reservoir. No expertise is superior to historical data of well and reservoir performance because the duo follows physics and any deviation from it is attributable to a misnomer. The decision to re-enter a well for re-perforation or workover must be supported by historical production and reasonable science which here means that trends are sustained on continuous physics and not abrupt pulses. Any interpretation arising from saturation logging tools without subjecting same to reasonable science could result in wrong action. This paper is providing a methodology to enhance thorough screening of candidates for saturation logging operations. First is to determine if the candidate well is multilevel and historical production above critical gas rate before shut-in to screen-out liquid loading consideration. If any level is plugged below any producing level, investigate for micro-annuli leakage. All historical liquid loading wells should be flowed at rate above critical rate and logged at flow condition. Static condition logging is only good for non-liquid loading wells. The use of any tool and its interpretation must be subjective and there comes the clash between the experienced Sales Engineer and the Production/Reservoir Engineer with the historical evidence. A simple historical trending and analysis results of API gravity and BS&W were used in the failed plug case-study. Further successful investigation was done and the results of the well performance afterwards negated the interpretation arising from the saturation tool which saw the reservoir sand flushed. The lesson learnt from the well logging and interpretation shows that when a well is under any form of liquid loading, interpretation must be subjective with reasonable science and historical production trend is critical. It is recommended that when a well is under historical liquid loading rate, until the rate above the critical rate is determined, no logging should be done and when done, logging should be at flow condition and the interpretation subject to reasonable system physics.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7538
Author(s):  
Wenkai Huang ◽  
Wei Hu ◽  
Tao Zou ◽  
Junlong Xiao ◽  
Puwei Lu ◽  
...  

Most existing wall-climbing robots have a fixed range of load capacity and a step distance that is small and mostly immutable. It is therefore difficult for them to adapt to a discontinuous wall with particularly large gaps. Based on a modular design and inspired by leech peristalsis and internal soft-bone connection, a bionic crawling modular wall-climbing robot is proposed in this paper. The robot demonstrates the ability to handle variable load characteristics by carrying different numbers of modules. Multiple motion modules are coupled with the internal soft bone so that they work together, giving the robot variable-step-distance functionality. This paper establishes the robotic kinematics model, presents the finite element simulation analysis of the model, and introduces the design of the multi-module cooperative-motion method. Our experiments show that the advantage of variable step distance allows the robot not only to quickly climb and turn on walls, but also to cross discontinuous walls. The maximum climbing step distance of the robot can reach 3.6 times the length of the module and can span a discontinuous wall with a space of 150 mm; the load capacity increases with the number of modules in series. The maximum load that modules can carry is about 1.3 times the self-weight.


Sign in / Sign up

Export Citation Format

Share Document