A Design of Low Temperature Dependence Voltage Reference Circuit for PWM Controller

2013 ◽  
Vol 310 ◽  
pp. 448-452
Author(s):  
Zhi Chao Zhao ◽  
Tie Feng Wu ◽  
Jing Li ◽  
Li Min Li ◽  
Qie Pan ◽  
...  

In order to provide steady voltage for PWM controller, a design of bipolar voltage reference circuit with high performance is presented. The circuit based on the compensation principle between Zener diode and B-E junction of triode is used in PWM controller and can bring out multi-way steady voltages, moreover, there is a high power supply rejection ratio (PSRR) and low temperature dependence. The results of simulation and test in Candence with bipolar process of HuaYue SB45 show that the temperature coefficient is about 1.2ppm/°C in the temperature range -55~125°C. The line regulation is about 0.4mV/V in 8~30V and the PSRR is 77.54dB. The design of circuit can satisfy the requirements of PWM controller.

2019 ◽  
Vol 17 (10) ◽  
pp. 777-783
Author(s):  
Shishu Pal ◽  
Ashutosh Nandi

This paper describes a compact, low voltage and high power supply rejection ratio (PSRR) Bandgap voltage reference circuit by using subthreshold MOSFETs. The proposed reference circuit is implemented using 0.18 μm CMOS technology. The circuit simulation is performed using the Cadence Spectre and Synopsys Hspice. The circuit generates the mean output reference voltage of 164 mV and temperature coefficient of 15.5 ppm/°C when temperature is swept from –40 °C to 120 °C at power supply of 1.2 V. For better PSRR, a feed forward mechanism is used. The proposed design has only single transistor for start-up circuit. The measured settling time for output reference voltage is observed to be less than 4 μs. No filtering capacitor is used to improve the PSRR, which is –97 dB up to 1 MHz and subsequently reduces to –47.5 dB at 158 MHz.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250068 ◽  
Author(s):  
L. F. SHI ◽  
X. MA ◽  
G. H. QIN ◽  
L. Y. CHENG ◽  
X. Q. LAI

For the requirement of power management controller chips, a wide supply range bandgap voltage reference circuit is presented. The preregulated circuit based on the regulation characteristic of zener diode extends the supply range and increases power supply rejection ratio (PSRR). Compensated by the base-emitter voltage (V BE ) linearization technique, the temperature stability of the bandgap circuit is improved further. The proposed circuit is implemented in a 0.4 μm bipolar CMOS DMOS (BCD) process and Spice simulation has been done for validation. The results of simulation and test show that the supply range of this circuit can reach 7.2 V to 40 V and 159 μV/V of supply voltage dependence; the temperature coefficient is just 3.5 ppm/°C over a wide temperature of -40°C to 125°C and PSRR is up to -94 dB at 1 kHz. For the perfective performance, this circuit can be used in wide temperature and wide supply range integrated circuit design.


2012 ◽  
Vol 588-589 ◽  
pp. 839-842 ◽  
Author(s):  
Zhi Cheng Hu ◽  
Zhi Hua Ning ◽  
Le Nian He

A low temperature coefficient, high voltage detection circuit used in Power over Ethernet is proposed. This circuit realizes the detection comparison without utilizing an extra voltage reference circuit and comparator while the temperature coefficient of the threshold voltage is as low as that of a regular bandgap reference. The proposed detection circuit is implemented in CSMC 0.5μm 60V BCD process, Cadence Spectre simulation results show that the temperature coefficient of the threshold voltage is 66.5 ppm/°C over the temperature range of -40°C to 125°C, and the maximum variation of the threshold voltage is 2.7% under all corners.


Author(s):  
Hayder Khaleel AL-Qaysi ◽  
Musaab Mohammed Jasim ◽  
Siraj Manhal Hameed

This paper presents the description and analysis of the design and HSPICE-based simulation results of very low-voltages (LVs) power supplies and high-performance specifications CMOS gate-driven (GD) operational amplifier (Op-Amp) circuit. The very LVs CMOS GD Op-Amp circuit designed using 90nm CMOS technology parameters and the folded cascode (FC) technique employed in the differential input stage. The HSPICE simulation results demonstrate that the overall gain is 73.1dB, the unity gain bandwidth is 14.9MHz, the phase margin is , the total power dissipation is 0.91mW, the output voltage swing is from 0.95V to 1V, the common-mode rejection ratio is dB, the equivalent input-referred noise voltage is 50.94  at 1MHz, the positive slew rate is 11.37 , the negative slew rate is 11.39 , the settling time is 137 , the positive power-supply rejection ratio is 74.2dB, and the negative power-supply rejection ratio is 80.1dB. The comparisons of simulation results at 1V and 0.814V power supplies’ voltages of the very LVs CMOS GD Op-Amp circuit demonstrate that the circuit functions with perfect performance specifications, and it is suitable for many considerable applications intended for very LVs CMOS Op-Amp circuits.


NANO ◽  
2015 ◽  
Vol 10 (03) ◽  
pp. 1550039 ◽  
Author(s):  
Sajad A. Loan ◽  
M. Nizamuddin ◽  
Abdul R. Alamoud ◽  
Shuja A. Abbasi

In this paper, novel carbon nanotube (CNT) based operational transconductance amplifiers (OTAs) have been designed and simulated. Three types of CNT-based OTAs have been designed at 45 nm technology node and have been compared with the conventional CMOS-based OTA. The comparative analysis of the key characteristics of all the devices has revealed that a significant improvement in performance is observed in the CNT-based OTAs, particularly in a pure CNT-OTA. In the pure CNT-OTA, DC gain has increased by 218%, slew rate has increased by 22.58%, the output resistance has increased by 55.2% and the power consumption is ∼ 193 times less in comparison to the conventional CMOS-OTA. Further, common mode rejection ratio (CMRR) and power supply rejection ratio positive (PSRR+) has increased by 31.87% and 136.3%, respectively in pure CNT-OTA. The performance of CNT-based OTAs has also been studied thoroughly by varying the number of CNTs (N), CNT pitch (S) and the diameter of CNTs (D CNT ) at 0.9 V. It has been observed that their performance can be improved further by using optimized values of CNT number; inter CNT-pitch and diameter. The stability analysis has shown that the pure CNT-OTA is highly stable. A 16.7% and 4% increase in phase and gain margins is achieved in the pure CNT-OTA in comparison to the bulk CMOS OTA. Finally, band and high pass filters have been realized by using the proposed CNT-based OTAs.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850152 ◽  
Author(s):  
Qiang Li Li ◽  
WanLing Deng ◽  
Xiao Yu Ma ◽  
JunKai Huang

A novel low line regulation voltage reference (VR) without an amplifier is presented in this paper. The design is achieved by subtracting two voltages which have the same temperature curves. All circuits use only one Bipolar Junction Transistor (BJT) to decrease the area greatly. Designed with the SMIC 0.18[Formula: see text][Formula: see text]m CMOS process, the simulation results show that the output voltage is 0.902[Formula: see text]V at TT process corner when the power supply is larger than 1.7[Formula: see text]V. The temperature coefficient (TC) is 3.6[Formula: see text]ppm/[Formula: see text]C to 7.4[Formula: see text]ppm/[Formula: see text]C at different power supplies and process corners. The simulated power supply rejection ratio (PSRR) is [Formula: see text]80[Formula: see text]dB at TT process corner when the power supply is 2.5[Formula: see text]V, and the PSRR at different process corners are almost the same. The line regulation of the proposed circuit is 0.005[Formula: see text]mV/V.


2013 ◽  
Vol 816-817 ◽  
pp. 882-886 ◽  
Author(s):  
Sonal Singhal ◽  
Rohit Singh ◽  
Amit Kumar Singh

This paper proposes a low power voltage reference generator in 0.18μm CMOS technology.The circuit presented here includes MOSFETs in sub threshold mode and uses the temperature dependence of threshold voltages and sub-threshold current of MOSFET to form a temperature-insensitive reference. An input supply voltage of 1.8 Volt is used for the circuit generating a total current of 1.33μA. By varying the device temperature over the range of-20°C to 100°C corresponding variation over the output voltage was found to lie in the range 397.8 to 400.2 mV. Thus a 0.6% variation in voltage over the considered range of temperature is obtained.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250019 ◽  
Author(s):  
ZHANGMING ZHU ◽  
WEI WEI ◽  
LIANXI LIU ◽  
YINTANG YANG

With the application of the voltage divider to the traditional bandgap reference without resistors, a high precision CMOS voltage reference without resistors has been proposed. The temperature coefficient has improved because the divider introduces the temperature compensation. The output reference voltage is 410.39 mV at the room temperature. The temperature coefficient of the voltage reference is 3.02 ppm/°C in the range from -20°C to 120°C. Moreover, the power supply rejection ratio of the voltage reference is -52.6 dB and the power consumption is 5.61 μW.


Sign in / Sign up

Export Citation Format

Share Document