Geogrid Reinforced Lime Cement Treated Granular Soils

2013 ◽  
Vol 330 ◽  
pp. 1090-1094 ◽  
Author(s):  
Omid Azadegan ◽  
Jie Li ◽  
S. Hadi Jafari ◽  
Gang Ren

Construction on problematic and soft soils has always been considered a challenging task by the geotechnical engineers. Such soils can be treated with traditional lime and cement stabilization. However in some cases using geogrid reinforced lime and cement treated materials can be very effective, especially in case of seismic or dynamic loads. In this research, a series of laboratory testing has been carried out to investigate mechanical properties of lime and cement treated granular materials with and without geogrid reinforcing layers. The results of the unconfined compressive tests show that geogrid reinforcement improves the ductility of the treated materials. However, it would not develop the compressive strength in many of used mix Designs. The investigations reveal that the mix design for lime and cement treatment must be selected accurately by considering the natural beds conditions to achieve the best possible results from stabilization procedure.

2016 ◽  
Vol 848 ◽  
pp. 532-537 ◽  
Author(s):  
Ye Shao ◽  
Xiao Yun Song ◽  
Wen Jun Ye ◽  
Song Xiao Hui ◽  
Yang Yu ◽  
...  

Titanium and its alloys have been widely used as implants replacing hard human tissues in biomedical fields. To improve the stability of implants in the surrounding bone tissues, the materials with porous structures were fabricated. In this paper powder metallurgy technique was employed to fabricate porous Ti-39Zr-6Nb (wt.%) alloys. The porous structures and mechanical properties of the porous alloys were examined by scanning electron microscopy (SEM) and compressive tests. The results showed that with increasing the sintering temperature the porosity of the alloys decreased and the compressive strength and the elastic modulus increased. The porosity of the alloys was in the range from 20.8% to 23.2%, and the pore sizes mostly centered in 10~30μm. The compressive strength and the elastic modulus were in the range from 110.4 to 292.4MPa and 4.7 to 12.4GPa respectively, which was close to human bone.


2020 ◽  
Vol 15 (3) ◽  
pp. 79-90
Author(s):  
Abbas Al-Hdabi ◽  
Mohammed K. Fakhraldin ◽  
Rasha A. Al-Fatlawy ◽  
Tawfek Sheer Ali

Ignition of waste paper sludge at elevated temperatures to produce electricity in power generation plants utilizing fluidized bed combustion generates paper sludge ash. Due to the high concentration of lime and gelignite in paper sludge ash, it is expected that it will play a vital role as a cementitious material. This paper investigates the use of paper sludge ash to improve the mechanical properties of the granular materials, which are suitable to subbase course for road and building constructions. Also, a comparison study with the use of Portland cement as an additive to granular materials has been covered. The mechanical properties were evaluated by conducting the California bearing ratio test for the two adopted methods. Moreover, the compressive strength of the samples using paper sludge ash and cement are investigated. In accordance to the California bearing ratio test, 4% paper sludge ash was indicated as the optimum ash content at which the California bearing ratio value increased by 173% and 111% in comparison with untreated material and 6% cement, respectively. On the other hand, and by means of the compressive strength, the granular materials with 4% paper sludge ash has compressive strength higher than those with 6% cement.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 138
Author(s):  
Asst. Prof. Dr. Khawla H. H. Shubber ◽  
Eng. Sajjad Hashim Mohamed

This research represents a trial of understanding and improving mechanical properties of base or subbase granular materials, used in pavement construction, stabilized with Portland cement known as cement treated base (CTB) in terms of density, optimum water content (O.W.C), and compression Strength of three curing ages (3, 7, 28) days under different situations. Different Portland cement percent of (0, 5, 7, 10, 12, and 15) % by weight were added to selected base course granular materials (type B according to local standard specification in Iraq). Results showed that the density of mixture increase with increasing added cement percent, while O.W.C takes its maximum value around 7% cement content, and compression strength increase with increasing cement content and curing age. Then effect of replacing 50% of natural granular materials by waste Portland cement concrete (WPCC) was investigated on the results of (0, 7& 15)% cement content on density, O.W.C and compression strength in the three curing ages. Results reveled although density of mixture cooperating WPCC for 0% cement content was higher, CTB of natural granular material were denser. On the other hand compressive strength decrease in case of using WPCC for all percent cement added and curing ages. Finally, effect of soaking in water on CTB with (7 &15)% cement compressive strength of three curing ages was studied, under three period of soaking (1 week, 2 weeks, &one month). Test results exposed that, CTB Compressive strength increase with increasing soaking period but still less than that of un-soaked and for all curing ages. For each test stage mathematics relationships with acceptable correlation were presented proofing test results tendency.  


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Haiping Shi ◽  
Zhongyao Li ◽  
Wenwei Li ◽  
Shaopeng Wang ◽  
Baotian Wang ◽  
...  

Laboratory freezing experiments were conducted to evaluate the effect of polyacrylamide (PAM) and lignocellulose on the mechanical properties and microstructural characteristics of Tibetan clay. Direct shear and unconfined compressive tests and field emission scanning electron microscopy analyses were performed on clay samples with different contents of stabilizers. The test results show that the addition of PAM can improve the unconfined compressive strength and cohesion of Tibetan clay, but an excessive amount of PAM reduces the internal friction angle. After several freeze-thaw cycles, the unconfined compressive strength and cohesion of samples stabilized by PAM decrease significantly, while the internal friction angle increases. Samples stabilized by PAM and lignocellulose have higher internal friction angles, cohesion, and unconfined compressive strength and can retain about 80% of the original strength after 10 freeze-thaw cycles. PAM fills the pores between soil particles and provides adhesion. The addition of lignocellulose can form a network, restrict the expansion of pores caused by freeze-thaw cycles, and improve the integrity of PAM colloids. It is postulated that the addition of a composite stabilizer with a PAM content of 0.4% and a lignocellulose content of 2% may be a technically feasible method to increase the strength of Tibetan clay.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lu Chen ◽  
Yichao Rui ◽  
Yihan Zhao

Rock mechanical parameters are of great importance for the construction and design of rock engineering. Rocks are usually subjected to the deteriorating effect of cyclic wetting-drying because of the change in moisture content. The main objective of this study is to reveal the degradation effects of wetting-drying cycles on strength and modulus on varying rocks. Three kinds of sandstones with different mineral constituents are selected for testing. Artificial treatments of cyclic wetting-drying are conducted on respective specimens of the three sandstones (0, 10, 20, 30, and 40 cycles) to simulate the damage of rocks exposed to natural weathering. Uniaxial compressive tests are carried out on sandstone specimens to obtain their strength and modulus. Test results show that, for the tested sandstones, both of the uniaxial compressive strength (UCS) and modulus are reduced as the cyclic number rises. In the first ten cycles, the losses of UCS and modulus are very significant. Subsequently the changes of UCS and modulus become much more placid against cyclic number. When the cyclic number is the same, the loss percentages of rock mechanical properties of the three sandstones are very different which mainly depends on the contents of expandable and soluble minerals.


2010 ◽  
Vol 654-656 ◽  
pp. 2628-2631 ◽  
Author(s):  
Satoshi Kishimoto ◽  
Toru Shimizu ◽  
Fu Xing Yin ◽  
Kimiyoshi Naito ◽  
Yoshihisa Tanaka

Metallic closed cellular materials containing polymer were fabricated by the penetrating polymer into metal foam. The aluminum and stainless steel foams were selected for the metal foam and epoxy resin and polyurethane resin were selected for the penetrated polymer. The many kinds of mechanical properties of this material were measured. The results of the compressive tests show that these materials have different stress-strain curves among the specimens that containing different materials in the cells. Also, this metallic closed cellular materials containing polymer have higher compressive strength, higher Young’s modules, higher energy absorption and higher internal friction than that of metallic closed cellular material without any polymer.


2020 ◽  
Vol 6 (5) ◽  
pp. 1031-1038
Author(s):  
Xiong Liang-Xiao ◽  
Song Xiao-Gang

The dry–wet cycle and high temperature exposure are important factors affecting the normal use and durability of concrete structures. The objective of this work is to investigate the mechanical properties of cement mortar specimens after combinations of dry–wet cycles and high temperature exposures, uniaxial compressive tests on cement mortar specimens were carried out under the following two sets of conditions: (1) high temperature treatment followed by a dry–wet cycle and (2) a dry–wet cycle followed by high temperature treatment. The results show that the compressive strength of specimens increases with the number of dry–wet cycles. After a dry–wet cycle and then a high temperature treatment procedure, the compressive strength of a specimen will first decrease and then increase with the number of dry–wet cycles. The strain at the peak stress of cement mortar decreases as the number of dry–wet cycles increases. At present, there are few research results about the mechanical properties of concrete first after combinations of dry–wet cycles and high temperature exposures. The work in this paper can enrich the results in this area.


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Mehdi Jalili ◽  
Mohmad Reza Ghasemi ◽  
Ali Reza Pifloush

In some parts of the world mechanical properties of problematic soils are not suitable for construction purposes. Today, regard to the importance of the soil improvement; by considering methods with more concordance with the environmental mechanisms in the nature, and with study and combination of geotechnical science, microbiology and geochemistry; researchers try to provide a suitable way to improve the physical and mechanical properties of the problematic soils. In this paper, the effect of the aerobic microorganisms of Sporosarsina Pasteurii (PTCC 1645), as a producer of Urease for the sedimentation of calcium carbonate and improvement of granular soil of Garmsar Industrial Town is evaluated experimentally in order to check the effects of this phenomena on the shear strength and stiffness of the granular soils. The results of the uniaxial compressive strength tests show the effect of adding the above mentioned microbial solution to the soils, in case of increased uniaxial compressive strength and stiffness of the soil. It should be mentioned that the granular soils have no compressive strength, naturally but after bio cementation the samples got notable values.


2016 ◽  
Vol 841 ◽  
pp. 111-117 ◽  
Author(s):  
Desak Nyoman Deasi Triani ◽  
Januarti Jaya Ekaputri ◽  
Triwulan ◽  
Setyo Hardono ◽  
Tri Eddy Susanto

This research use metakaolin and clay containing amorphous silica and alumina after calcination at 700°C. Mechanical properties and fire resistance of geopolymer paste increase as the ratio of silica to alumina. Mix design composition on this research based on the ratio of silica to alumina. The ratio of silica to alumina for metakaolin paste are 1.4 and 1.8. While for clay paste the ratio that used are 2.8 and 3.2. Na2SiO3 and NaOH with 10 M and 8 M were used as alkali activator at this research. Based on analysis the effect of increasing the ratio of silica to alumina increase fire resistance ability for both metakaolin and clay. However initial compressive strength is effected not only by ratio of silica to alumina but also the ratio of water to solid and SiO2/Na2O. The compressive strength decrease as the ratio of water to solid increases. Meanwhile compressive strength increase as the ratio of SiO2/Na2O increase.


2012 ◽  
Vol 253-255 ◽  
pp. 408-416 ◽  
Author(s):  
J.M. Irwan ◽  
Norzila Othman ◽  
Koh Heng Koh ◽  
R.M. Asyraf ◽  
S.K. Faisal ◽  
...  

The aim of this project was to develop of mix design nomograph for PFC that can be used for estimated the required compressive strength and splitting tensile strength with the required PET and water-cement-ratio.The fibers were prepared by using plastic granulator machine SLM 50 FY with size passing 10 mm and retained 5 mm sieve. Different volumes percentages of PET fibers with 0%, 0.5%, 1.0% and 1.5%, were introduced in concrete mixes. The specimens prepared for this study was cylinder concrete with 100 mm diameter and 200 mm height. The laboratory work for physical properties were focused on density and workability, meanwhile for mechanical properties were focused on compressive strength, splitting tensile strength and modulus of elasticity of PET fiber concrete (PFC). The experiment results indicate that the addition of PET fibers significantly decreased the compressive strength and splitting tensile, however the compressive strength still can be acceptable since achieved the mix design The nomograph developed can be used to estimate the desired compressive, splitting tensile strength as well as the modulus of elasticity (MOE).


Sign in / Sign up

Export Citation Format

Share Document