The Tapping Machine Mathematical Modeling Simulation Study

2013 ◽  
Vol 373-375 ◽  
pp. 2073-2077
Author(s):  
Bing Hua Jiang ◽  
Li Fang ◽  
Hang Biao Guo

Based on the tapping machines special structural features and practices, from both directions of rotation and impact established the tapping machine mechanism rotating borer and impact dynamic mathematical model, analysed the effect of different tapping machines parameters on the model itself, simulated the model with inputting wide pulse signal, the simulation results show that: firstly, the tapping machine model established in this paper is reasonable; secondly, increase the damping coefficient of the blast furnace, the tapping machines rotating borer rotation speed and impact attenuation speed decrease.

2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


2021 ◽  
Author(s):  
N.V. Kovalenko ◽  
K.V. Sovin ◽  
O.A. Ryabushkin

Problem formulating. The vital processes of biological tissues are closely related to their electrical properties. An important task is to create a physical and mathematical model that will link the electrical properties of tissues to their physiological state. Goal. Construction of a model of biological tissue electrical properties based on the equations of ion electrodiffusion. Result. The paper presents the model of biological tissue electrical properties based on the ion electrodiffusion equations, and compares the simulation results with the experimental results presented in the literature. Practical meaning. The presented model can be used to describe processes occurring in tissue at the level of concentration and conductivity of ions in individual cells and cell membranes. In particular, the process of tissue degradation during laser radiation heating can be described.


2014 ◽  
Vol 658 ◽  
pp. 89-94 ◽  
Author(s):  
Zoltan Iosif Korka ◽  
Calin Octavian Miclosina ◽  
Vasile Cojocaru

Gears are frequently used in mechanical systems for power transmission, speed variation and for changing their operating sense. Mathematical modeling of gear transmissions offers a better understanding of their dynamic behavior. A significant amount of literature and studies are available in this field. Because the gears are critical components of any rotating machine, they have received considerable attention regarding their mathematical modeling, being published a lot of papers concerning this problem. The purpose of this paper is to present a mathematical model for studying the dynamic behavior of a single stage helical gearbox. Based on the proposed mathematical model and using specialized software, a numerical simulation of the gearbox dynamics will be performed. Simulation results will be compared with data obtained experimentally-obtained data.


2013 ◽  
Vol 391 ◽  
pp. 386-389
Author(s):  
Li Jun Yu ◽  
Jing Guang Sun ◽  
Jia Chen ◽  
Hui Wang

As wood drying kiln system has the nonlinear characteristics of a large lag, multivariable, large inertia and strong coupling. It is difficult to establish an accurate mathematical model of the wood drying kiln system by using traditional mathematical Modeling method. The data of wood drying kiln is drawn by CFD-Fluent, and the translate function of the control system is obtained by Matlab system identification. The simulation results show that the method has good accuracy, and can meet the control requirements of the system.


Author(s):  
Valery А. Gruzdev ◽  
◽  
Georgy V. Mosolov ◽  
Ekaterina A. Sabayda ◽  
◽  
...  

In order to determine the possibility of using the method of mathematical modeling for making long-term forecasts of channel deformations of trunk line underwater crossing (TLUC) through water obstacles, a methodology for performing and analyzing the results of mathematical modeling of channel deformations in the TLUC zone across the Kuban River is considered. Within the framework of the work, the following tasks were solved: 1) the format and composition of the initial data necessary for mathematical modeling were determined; 2) the procedure for assigning the boundaries of the computational domain of the model was considered, the computational domain was broken down into the computational grid, the zoning of the computational domain was performed by the value of the roughness coefficient; 3) the analysis of the results of modeling the water flow was carried out without taking the bottom deformations into account, as well as modeling the bottom deformations, the specifics of the verification and calibration calculations were determined to build a reliable mathematical model; 4) considered the possibility of using the method of mathematical modeling to check the stability of the bottom in the area of TLUC in the presence of man-made dumping or protective structure. It has been established that modeling the flow hydraulics and structure of currents, making short-term forecasts of local high-altitude reshaping of the bottom, determining the tendencies of erosion and accumulation of sediments upstream and downstream of protective structures are applicable for predicting channel deformations in the zone of the TLUC. In all these cases, it is mandatory to have materials from engineering-hydro-meteorological and engineering-geological surveys in an amount sufficient to compile a reliable mathematical model.


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


2015 ◽  
Vol 9 (1) ◽  
pp. 625-631
Author(s):  
Ma Xiaocheng ◽  
Zhang Haotian ◽  
Cheng Yiqing ◽  
Zhu Lina ◽  
Wu Dan

This paper introduces a mathematical model for Pulse-Width Modulated Amplifier for DC Servo Motor. The relationship between pulse-width modulated (PWM) signal and reference rotation speed is specified, and a general model of motor represented by transfer function is also put forward. When the input signal changes, the rotation speed of the servo motor will change accordingly. By changing zeros and poles, transient performance of this system is discussed in detail, and optimal ranges of the parameters is recommended at the end of discussion.


Sign in / Sign up

Export Citation Format

Share Document