Paraffin Wax Powder Production by Ultrasonic Atomization

2013 ◽  
Vol 378 ◽  
pp. 145-149 ◽  
Author(s):  
Phairote Sungkhaphaitoon ◽  
Nattinee Sangsai ◽  
Sirikul Wisutmethangoon ◽  
Thawatchai Plookphol

This work was aimed to study wax powder production from the paraffin melt by using ultrasonic atomization process. Effects of atomization operating parameters: melt temperature, melt flow rate and ultrasonic vibration amplitude on particle size distribution, median particle size, production yield and morphology of the atomized paraffin wax powder were investigated. It was evidenced from the experimental results that the particle size distribution of paraffin wax powder was narrowed and the median particle size was decreased with decreasing the melt flow rate, the vibration amplitude and increasing the melt temperature. The production yield of paraffin wax powder tended to increase with decreasing the melt flow rate, the vibration amplitude and increasing the melt temperature. The atomized paraffin wax powder was spherical shape with rough surface and some particles were formed as satellites.

Author(s):  
E. Rajamäki ◽  
M. Leino ◽  
P. Vuoristo ◽  
P. Järvelä ◽  
T. Mäntylä

Abstract Three different types of polyethylene powders were flame sprayed onto pre-heated steel substrate previously coated by electrostatic spray system with a thin epoxy primer layer. Properties of the polyethylene (PE) powders, including powder density, particle size and melt flow rate (MFR) were measured in order to study their influence on the mechanical properties of the coating. The spray experiments started with optimization of spraying parameters. The main variables were pre-heating temperature of the substrate, temperature increase during spraying (influenced by the spraying distance), and thickness of the PE coatings. The laboratory tests performed for the coatings were coating characterization by microscopy and mechanical testing. Porosity and thickness of the coatings were determined by optical and stereo microscopy studies from polished cross-sectional samples. Hardness, impact strength, peel strength, and adhesive strength of the coatings were also investigated. Also some hot water sinking and heat cycling tests were performed. As a result from the present studies it can be concluded that powder properties have great influence on the mechanical properties of the final coating.


2005 ◽  
Vol 284-286 ◽  
pp. 365-368 ◽  
Author(s):  
Yin Zhang ◽  
Yoshiyuki Yokogawa ◽  
Tetsuya Kameyama

The effect of different particle sizes on the flexural strength and microstructure of three different types of hydroxyapatite (HAp) powders was studied. The powder characteristics of laboratory synthesized HAp powder (Lab1 and Lab2) were obtained through a wet milling method, and the median particle size and the specific surface area of powders are different with the dryness period. The median particle sizes of Lab1 and Lab2 are 0.34 µm and 0.74 µm, and the specific surface areas of Lab1 and Lab2 are 38.01 m2/g and 19.77 m2/g. The commercial HAp had median particle size of 1.13 µm and specific surface area of 11.62m2/g. The different powder characteristics affected the slip characteristics, and the flexural strength and microstructure of the sintered porous HAp bodies are also different. The optimum value for the minimum viscosity in these present HAp slip with respect to its solid loading and the optimum amount of the deflocculant were investigated. The flexural strengths of the porous HAp ceramics prepared by heating at 1200°C for 3 hrs in air were 17.59 MPa for Lab1 with a porosity of 60.48%, 10.51 MPa for Lab2 with a porosity of 57.75%, and 3.92 MPa for commercial HAp with a porosity of 79.37%.


2021 ◽  
Author(s):  
Igor M. Ivanov ◽  
Tatiana B. Pechurina ◽  
Nikolai G. Vengerovich ◽  
Mikhail A. Yudin ◽  
Aleksandr S. Nikiforov ◽  
...  

Samples of antiemetic drugs (ondansetronum, palonosetronum, metoclopramidum) in the form of powder for inhalation have been developed by the method of spray drying. The granulometric composition, hygroscopicity and aerodynamic distribution of aerosol particles of the drugs have been investigated. The dosage form of the powder for inhalation of antiemetics (ondansetronum and palonosetronum) in terms of its particle size distribution, hygroscopicity and content of the agent corresponds to those for inhalation using dry powder inhalers. In the study of the phase-dispersed composition of aerosol, ondansetronum and palonosetronum in the dosage form of powder for inhalation as part of the HandiHaler inhaler (at a flow rate of 60 l / min) showed high rates of the released dose up to 72-76%, respirable particle fraction (up to 5 m) up to 54 -56% and a mass median particle size of about 3 microns. Obtaining the inhaled form of metoclopramide requires optimization of the production method for receiving the product with acceptable pharmaceutical properties.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 787 ◽  
Author(s):  
Janusz W. Sikora ◽  
Ivan Gajdoš ◽  
Andrzej Puszka

The aim of the present work is to investigate the effect of halloysite nanotubes (HNT) on the mechanical properties of low-density polyethylene composites modified by maleic anhydride-grafted PE (PE-graft-MA). Polyethylene nanocomposites were prepared using an injection molding machine, Arburg Allrounder 320 C 500–170; the HNT content was varied at 0 wt %, 2 wt %, 4 wt % and 6 wt %, and the PE-graft-MA content was varied at 5 wt %. The composites were examined for their ultimate tensile stress, strain at ultimate stress, hardness, impact strength, melt flow rate, heat deflection temperature, Vicat softening temperature, crystallinity degree and phase transition temperature. It was found that the addition of halloysite nanotubes to low-density polyethylene (LDPE) led to an increased heat deflection temperature (HDT, up to 47 °C) and ultimate tensile strength (up to 16.00 MPa) while the Vicat softening temperature, strain at ultimate stress, impact strength and hardness of examined specimens slightly decreased. Processing properties of the materials specified by the melt flow rate (MFR) deteriorated almost twice. The results have demonstrated that the nanoparticles can reinforce enhance LDPE at low filler content without any considerable loss of its ductility, but only when halloysite nanotubes are superbly distributed in the polyethylene matrix.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
André Eiermann ◽  
Samo Smrke ◽  
Loïc-Marco Guélat ◽  
Marco Wellinger ◽  
Anja Rahn ◽  
...  

Abstract The objective of this paper is to elucidate the variables that govern coffee extraction from single serve coffee capsules. The study was conducted on 43 Nespresso and Nespresso-compatible capsules of the same geometry, from all of which the coffee was extracted on the same machine. This allowed the link between a range of coffee and capsule (input) parameters with coffee brew (output) variables to be studied. It was demonstrated that the most efficient way to increase total dissolved solids in the brew is to use more coffee for extraction, and/or to grind the coffee more finely. However, grinding too finely can lead to excessive flow restriction. The most significant new insight from this study is the importance of the proportion of fines (particles smaller than 100 µm) regarding the capsule extraction dynamics. Capsules with a higher share of fines, for similar median particle size of the ground coffee, led to longer extraction times. General rules applicable for capsule coffee product development were established, although fine-tuning of parameters for successful capsule coffee extraction remains specific to production line and type of coffee.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 970 ◽  
Author(s):  
Bao Hoang Duong ◽  
Hoai Nam Truong ◽  
Quynh Anh Phan Nguyen ◽  
Thuong Nhan Nguyen Phu ◽  
Le Thi Hong Nhan

Low aqueous solubility and poor bioavailability of curcumin have limited its application in various fields. One approach to address this issue is to formulate a nanosuspension that incorporates curcumin, which has been previously shown to exhibit remarkably improved solubility in comparison with that of a bare compound. In this study, the preparation process of curcumin nanosuspension was optimized with a median particle size as the outcome. Gum arabic was used as a natural polymeric surfactant and the suspension was formulated using high speed homogenization. Optimization results, realized via a response surface methodology, showed that a minimum median particle size (8.524 µm) could be attained under the following conditions: curcumin:gum arabic ratio of 1:6 g/g; homogenization speed of 8300 rpm and homogenization time of 40 min. Under these conditions, the particle size of obtained suspension was shown to be consistent for around seven days without major aggregation. The homogenization process could be scaled up to five times in terms of suspension volume. TEM also showed that curcumin nanoparticles had a nearly spherical shape and homogeneous structure with a size range of 40–80 nm.


Author(s):  
Annika Wilms ◽  
Andreas Teske ◽  
Robin Meier ◽  
Raphael Wiedey ◽  
Peter Kleinebudde

Abstract Purpose In continuous manufacturing of pharmaceuticals, dry granulation is of interest because of its large throughput capacity and energy efficiency. In order to manufacture solid oral dosage forms continuously, valid control strategies for critical quality attributes should be established. To this date, there are no published control strategies for granule size distribution in continuous dry granulation. Methods In-line laser diffraction was used to determine the size of granules in a continuous roll compaction/dry granulation line (QbCon® dry). Different process parameters were evaluated regarding their influences on granule size. The identified critical process parameters were then incorporated into control strategies. The uncontrolled and the controlled processes were compared based on the resulting granule size. In both processes, a process parameter was changed to induce a shift in median particle size and the controller had to counteract this shift. Results In principle, all process parameters that affect the median particle size could also be used to control the particle size in a dry granulation process. The sieve impeller speed was found to be well suited to control the median particle size as it reacts fast and can be controlled independently of the throughput or material. Conclusion The median particle size in continuous roll compaction can be controlled by adjusting process parameters depending on real-time granule size measurements. The method has to be validated and explored further to identify critical requirements to the material and environmental conditions.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Liu Xijun ◽  
Jiang Zhaohua ◽  
Zhu Wenming

AbstractTwo different types of polyolefine (PO) grafted with itaconic acid as a reactive compatibilizer, polypropylene (PP) grafted with itaconic acid (PP-g-ITA) and high density polyethylene (HDPE) grafted with itaconic acid (HDPE-g-ITA), PP and HDPE grafted with copolymer of itaconic acid and styrene (PP-g-(ITA-St) and HDPE-g-(ITA-St)) were prepared by melt graft technique through reactive type twin-screw extruder. FT-IR and thermal analysis were used to characterize the structure of the graft copolymer. The graft ratio (GR) and melt flow rate (MFR) were determined by non-aqueous titration and melt flow rate analyzer. The effect of the concentration of monomer and initiator dosage on GR and MFR of graft copolymer were studied. Then polyamide 6 (PA 6) blends, PA 6/PP (PA 6/HDPE), that compatibilized with PP-g-ITA (HDPE-g-ITA) were prepared. The morphology of the blends was analyzed by SEM, DSC and Molau tests and the mechanical properties of which were characterized by tensile, impact, and bend tests. The results of mechanical property showed that the impact strength of blends was increased by 50% and 70% after PP-g-ITA and HDPE-g-ITA was used as compatibilizer, but the MFR of blends was decreased. The SEM photographs indicated that the accession of compatibilizer obviously improved binding state between two phases in blends, the size of dispersed phase was reduced evidently and the interface became indistinct. DSC results demonstrated that in the case of PP-g-ITA, glass temperature (Tg) of PA 6 matrix in blends was ascended, melt point (Tm) was improved a little, crystallinity (Xc) was decreased, Tm and Xc of PP phase was increased; With the accession of HDPE-g-ITA, Tm of PA 6 matrix and HDPE phase had almost no change, Xc of PA 6 matrix was decreased and Xc of HDPE phase was increased.


Sign in / Sign up

Export Citation Format

Share Document