Test Analysis of Shear Performance on Young-Old Concrete Interface between Bonded Rebar and Groove

2013 ◽  
Vol 438-439 ◽  
pp. 235-239 ◽  
Author(s):  
Hao Sun ◽  
Shi Lin Liu ◽  
Xiao Gang Li

The young-old concrete can work together as a whole is the key issue of structural strengthening. Aiming at the technical selection problem appeared frequently in the bridge strengthening about the young-old concrete interface treatments between bonded rebar and grooving, 12 specimens were designed to compare with the shear performance and failure modes of the young-old concrete interface. The test results show that the failure characteristics of specimens which embedded steel bars are ductile, but the failure characteristics of specimens which slotted are brittle and the new concrete in slot position were cut off. And the young-old concrete interface shear strength of the specimens which embedded steel bars was distinctly stronger than that of the slotted specimens. So, the treatment of bonded rebar is proposed during the structural strengthening design. At the same time, the depth and distance of the bonded rebar should be well controlled.

2020 ◽  
pp. 136943322098166
Author(s):  
Shuhao Yin ◽  
Bin Rong ◽  
Lei Wang ◽  
Yiliang Sun ◽  
Wuchen Zhang ◽  
...  

This paper studies the shear performance of the connection with the external stiffening ring between the square steel tubular column and unequal-depth steel beams. Two specimens of interior column connections were tested under low cyclic loading. The deformation characteristics and failure modes exhibited by the test phenomena can be summarized as: (1) two specimens all exhibited shear deformation in steel tube web of the panel zone and (2) weld fracture in the panel zone and plastic hinge failure at beam end were observed. Besides, load-displacement behaviors and strain distributions have been also discussed. The nonlinear finite element models were developed to verify the test results. Comparative analyses of the bearing capacity, failure mode, and load-paths between the equal-depth and unequal-depth beam models have been carried out.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bo Wen ◽  
Chunfeng Wan ◽  
Lin Liu ◽  
Da Fang ◽  
Caiqian Yang

Fatigue behavior is an important factor for mechanical analysis of concrete members reinforced by basalt fiber reinforced polymer (BFRP) grid and polymer cement mortar (PCM) and plays a critical role in ensuring the safety of reinforced concrete bridges and other structures. In this study, on the basis of the static loading test results of concrete specimens reinforced by BFRP grid and PCM, a series of fatigue tests with different loading levels were conducted on interfaces between BFRP grid and concrete to investigate the fatigue behavior of BFRP grid-concrete interfaces. The test results indicate that with high loading level, the fatigue failure mode of interface is interfacial peeling failure while it transforms to the fatigue fracture of the BFRP grid under low loading level. The fatigue life (S-N) curves of BFRP grid-concrete interface are obtained and fitted in stages according to different failure modes, and the critical point of the two failure modes is pointed out. The relative slip evolution of interface during fatigue is further revealed in different stages with two failure modes, and the law of interface strain is studied with the increase of fatigue times. The relation of effective bonding length of interface and fatigue times is also described.


2014 ◽  
Vol 980 ◽  
pp. 132-136 ◽  
Author(s):  
Ahmad Baharuddin Abd Rahman ◽  
Jen Hua Ling ◽  
Zuhairi Abd Hamid ◽  
Mohd Hanim Osman ◽  
Shahrin Mohammad ◽  
...  

This paper presents the test results of proposed grouted sleeve connections under increasing tensile load. The objective of this research was to investigate splice connections that could provide tensile strength similar to the full tensile strength of the connected rebars. The parameters varied were splice types, splice length and rebar embedment length. The performance of the splice connection was evaluated based on the load-displacement, ultimate load, displacements and failure modes. The results show that the strength of splice connection depends on the bond strength between sleeve-to-grout and grout-to-rebar; the tensile strength of spliced steel bars and also the tensile strength of sleeve. It is observed that when the grout compressive strength is more than 60N/mm2and bar embedded length is at least 10 bar diameter, the splice connection in BS series is able to provide full tensile strength of the connected rebars.


Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 955-968
Author(s):  
XUDONG ZHU ◽  
YINGYING XUE ◽  
XUEWEN ZHANG ◽  
PENGFEI QI ◽  
JIE SHEN ◽  
...  

This study examined the properties of components connected by beech and self-tapping screw composite dowels (group C). As a contrast, the components connected by beech dowels and self-tapping screws individually were tested. The test results indicated that the properties of the components connected by beech dowels (group B) were better than those connected by self-tapping screws (group S), except the ductility coefficient, final displacement, and energy consumption. On the other hand, the main failure modes of groups B and S were the broken beech dowel and the bent self-tapping screw, respectively. For group C, two peak values could be found which were larger than the maximum load of groups B and S, respectively. The properties of group C were better than those of groups B and S, except that the final displacement and energy consumption were located between those of groups B and S. Meanwhile, the linear equation in two unknowns have be found between groups B, S and C.


2014 ◽  
Vol 638-640 ◽  
pp. 109-114
Author(s):  
Xian Guo Ye ◽  
Kai Nan Yang ◽  
Xun Chong ◽  
Qing Jiang

Mechanical properties of joint between superimposed slabs have a remarkable effect on the bending performance of the whole slab. To study the bending performance of superimposed slabs with different forms of joint, six superimposed slabs were designed and produced. Based on the static loading experiment, load was concentrated on two three-equal-division points, bearing capacity, deformation, cracks of specimens were obtained. Whether there were lattice steel bars in the precast slab or not and different reinforcement in the joint were considered to study the bending performance. The test results show that the failure mode of slab without lattice steel bars is brittle while others are ductile. Lattice steel bars can control the development of cracks along the superposed surface, increasing the shear capacity and improving the ductility of specimens. The bearing capacity of the whole superimposed slab depends on the joint cross section. The joint would not generate a difference to the deflection curves in service condition. When reinforcement in the joint is strengthened, failure modes of slabs will be effectively improved.


2020 ◽  
Vol 4 (4) ◽  
pp. 182
Author(s):  
Luciano Ombres ◽  
Salvatore Verre

In the paper, the bond between a composite strengthening system consisting of steel textiles embedded into an inorganic matrix (steel reinforced grout, SRG) and the concrete substrate, is investigated. An experimental investigation was carried out on medium density SRG specimens; direct shear tests were conducted on 20 specimens to analyze the effect of the bond length, and the age of the composite strip on the SRG-to-concrete bond behavior. In particular, the tests were conducted considering five bond length (100, 200, 250, 330, and 450 mm), and the composite strip’s age 14th, 21st, and 28th day after the bonding. Test results in the form of peak load, failure modes and, bond-slip diagrams were presented and discussed. A finite element model developed through commercial software to replicate the behavior of SRG strips, is also proposed. The effectiveness of the proposed numerical model was validated by the comparison between its predictions and experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zude Ding ◽  
Jincheng Wen ◽  
Xiafei Ji ◽  
Zhihua Ren ◽  
Sen Zhang

The presence of voids or lining thinning directly affects the mechanical behavior of linings, and these defects threaten the safety of tunnel operation. In this study, a series of 1/5-scale model tests was used to investigate the mechanical behavior of normal concrete (NC) linings in consideration of voids and combined defects. Test results showed that the void and combined defects substantially reduced the load-bearing capacity and deformation properties of the linings. The inelastic mechanical behavior of the linings was also significantly affected by the defects. The effects of lining defects located at the spandrel were slightly weaker than those of lining defects located at the crown. As the void size or degree of combined defects increased, the tensile strain at the location of the lining defects also increased. Therefore, the defect position of the linings was easily damaged. The defects considerably reduced the overall deformation of the linings but increased the local deformation. The distribution of lining cracks was concentrated at the defect position. In addition, different failure characteristics of the lining were observed due to the differences in defects.


2014 ◽  
Vol 525 ◽  
pp. 416-419 ◽  
Author(s):  
Hye Ran Kim ◽  
Dae Hyun Kang ◽  
Hyun Do Yun

This paper reports the experimental results to evaluate in-plane shear performance of insulated concrete sandwich panel (ICSP) with glass fiber-reinforced polymer (GFRP) grid shear connectors. The variables considered in this study are the grid size (35 and 53mm) of GFRP shear connectors and the types of insulation (expanded polystyrene, EPS and extruded polystyrene with special slots, XPSS). For loading in-plane shear force to interface between inner and outer wall of ICSP system, the ICSP specimens were supported vertically at the bottom edge of the two concrete outer walls by steel blocks. The test results indicate that ICSP with XPSS developed higher shear flow strengths in ICSP with EPS when 35mm spacing of GFRP grid is used. Also, the test results indicated that as the grid spacing of GFRP shear connector decreases, the shear flow strength of ICSP with XPSS insulation was higher, but the shear flow strength of ICSP with EPS insulation was lower.


2011 ◽  
Vol 201-203 ◽  
pp. 2900-2903 ◽  
Author(s):  
Chui Huon Tina Ting ◽  
Hieng Ho Lau

Built-up sections are used to resist load induced in a structure when a single section is not sufficient to carry the design load for example roof trusses. In current North American Specification, the provision has been substantially taken from research in hot-rolled built-up members connected with bolts or welds [1]. The aim of this paper is to investigate on built-up back-to-back channels stub columns experimentally and theoretically using Effective Width Method and Direct Strength Method. Compression test was performed on 5 lipped channel and 5 back-to-back channels stub columns fabricated from cold-formed steel sheets of 1.2mm thicknesses. The test results indicated that local buckling is the dominant failure modes of stub columns. Therefore, Effective Width Method predicts the capacity of stub columns compared to Direct Strength Method. When compared to the average test results, results based on EWM are 5% higher while results based on DSM are 12% higher for stub column.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Akter Hosen ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam

Nowadays, the use of near surface mounted (NSM) technique strengthening reinforced concrete (RC) structural members is going very popular. The failure modes of NSM strengthened reinforced concrete (RC) beams have been shown to be largely due to premature failure such as concrete cover separation. In this study, CFRP U-wrap end anchorage with CFRP fabrics was used to eliminate the concrete cover separation failure. A total of eight RC rectangular beam specimens of 125 mm width, 250 mm depth, and 2300 mm length were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM steel bars and the remaining four specimens were strengthened with NSM steel bars together with the U-wrap end anchorage. The experimental results showed that wrapped strengthened beams had higher flexural strength and superior ductility performance. The results also show that these beams had less deflection, strain, crack width, and spacing.


Sign in / Sign up

Export Citation Format

Share Document