Effects of Tooth Number of Drive Gear on Mechanical Properties of Polypropylene/Polyester Composite Tubular Knits

2013 ◽  
Vol 457-458 ◽  
pp. 57-60
Author(s):  
Ching Wen Lou ◽  
Jin Mao Chen ◽  
Chien Teng Hsieh ◽  
Jia Horng Lin

The severe global climate changes result in consecutive torrential rains in rainy season, and causes water loss and soil erosion. For an effective water and soil conservation, geotextiles are commonly used in geotechnical engineering. Geotextiles should able to isolate soil, filter water, and reinforce the soil; therefore, the material for geotextiles should be acid-resistant and alkali-resistant, such as polypropylene (PP) and polyester (PET). This study uses PP fibers as the skin and PET plied yarns as the core to form PP/PET composite tubular knits on a cord knitting machine. The PET plied yarn is fed with a specified tensile strength, and only the tooth number of the drive gear varies. Mechanical property test results show that a drive gear of 30 teeth increases the tensile strength of the resulting tubular knits; however, with a drive gear of 35 teeth, the tensile strength decreases. An optimal core coverage occurs with a drive gear of 30 teeth.

2012 ◽  
Vol 627 ◽  
pp. 751-755 ◽  
Author(s):  
Jia Horng Lin ◽  
Hsiu Ying Chung ◽  
Kun Da Wu ◽  
Shih Peng Wen ◽  
Chao Tsang Lu ◽  
...  

Polylactic acid (PLA) has a widespread application, such as bone scaffolds, in biomedical field. This study creates PLA bone scaffolds, which has a structural stability, by using 150 denier (D) PLA plied yarn. 75 D PLA filaments are combined and then twisted into plied yarn. During the twisting process, the twists per inch (TPI) are varied. The resulting plied yarn undergoes heat treatment, and then is evaluated with mechanical property tests, determining an optimal TPI of 9. The plied yarn is then braided into PLA bone scaffolds. PLA bone scaffolds, thermally treated or not, are observed by a stereomicroscope and tested for porosity and tensile strength. According to test results, the optimal TPI is 9, which results from the optimal tensile strength. However, the variation in elongation of various 150 D plied yarn is not significant. When observed by a stereomicroscope, PLA bone scaffolds, which are thermally treated, have a compact filament arrangement. This is due to thermal bonding between filaments; in addition, the heat treatment duration is short, so the PLA filaments are not melted completely, resulting in a stable, hollow structure. According to porosity and tensile strength test, PLA bone scaffolds that are thermally treated exhibit a lower porosity and tensile strength due to the compact arrangement and tender phenomenon of the filaments. As a result, the optimal PLA bone scaffolds are made of 150 D plied with a TPI of 9, followed by a heat treatment at 165 °C for ten minutes.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


Author(s):  
Pontus Lurcock ◽  
Fabio Florindo

Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


The Condor ◽  
2021 ◽  
Author(s):  
Natália Stefanini Da Silveira ◽  
Maurício Humberto Vancine ◽  
Alex E Jahn ◽  
Marco Aurélio Pizo ◽  
Thadeu Sobral-Souza

Abstract Bird migration patterns are changing worldwide due to current global climate changes. Addressing the effects of such changes on the migration of birds in South America is particularly challenging because the details about how birds migrate within the Neotropics are generally not well understood. Here, we aim to infer the potential effects of future climate change on breeding and wintering areas of birds that migrate within South America by estimating the size and elevations of their future breeding and wintering areas. We used occurrence data from species distribution databases (VertNet and GBIF), published studies, and eBird for 3 thrush species (Turdidae; Turdus nigriceps, T. subalaris, and T. flavipes) that breed and winter in different regions of South America and built ecological niche models using ensemble forecasting approaches to infer current and future potential distributions throughout the breeding and wintering periods of each species. Our findings point to future shifts in wintering and breeding areas, mainly through elevational and longitudinal changes. Future breeding areas for T. nigriceps, which migrates along the Andes Mountains, will be displaced to the west, while breeding displacements to the east are expected for the other 2 species. An overall loss in the size of future wintering areas was also supported for 2 of the species, especially for T. subalaris, but an increase is anticipated for T. flavipes. Our results suggest that future climate change in South America will require that species shift their breeding and wintering areas to higher elevations in addition to changes in their latitudes and longitude. Our findings are the first to show how future climate change may affect migratory birds in South America throughout the year and suggest that even closely related migratory birds in South America will be affected in different ways, depending on the regions where they breed and overwinter.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2021 ◽  
Vol 10 (8) ◽  
pp. 500
Author(s):  
Lianwei Li ◽  
Yangfeng Xu ◽  
Cunjin Xue ◽  
Yuxuan Fu ◽  
Yuanyu Zhang

It is important to consider where, when, and how the evolution of sea surface temperature anomalies (SSTA) plays significant roles in regional or global climate changes. In the comparison of where and when, there is a great challenge in clearly describing how SSTA evolves in space and time. In light of the evolution from generation, through development, and to the dissipation of SSTA, this paper proposes a novel approach to identifying an evolution of SSTA in space and time from a time-series of a raster dataset. This method, called PoAIES, includes three key steps. Firstly, a cluster-based method is enhanced to explore spatiotemporal clusters of SSTA, and each cluster of SSTA at a time snapshot is taken as a snapshot object of SSTA. Secondly, the spatiotemporal topologies of snapshot objects of SSTA at successive time snapshots are used to link snapshot objects of SSTA into an evolution object of SSTA, which is called a process object. Here, a linking threshold is automatically determined according to the overlapped areas of the snapshot objects, and only those snapshot objects that meet the specified linking threshold are linked together into a process object. Thirdly, we use a graph-based model to represent a process object of SSTA. A node represents a snapshot object of SSTA, and an edge represents an evolution between two snapshot objects. Using a number of child nodes from an edge’s parent node and a number of parent nodes from the edge’s child node, a type of edge (an evolution relationship) is identified, which shows its development, splitting, merging, or splitting/merging. Finally, an experiment on a simulated dataset is used to demonstrate the effectiveness and the advantages of PoAIES, and a real dataset of satellite-SSTA is used to verify the rationality of PoAIES with the help of ENSO’s relevant knowledge, which may provide new references for global change research.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


Sign in / Sign up

Export Citation Format

Share Document