Thermal Stability of Tilt Grain Boundaries in Graphene

2013 ◽  
Vol 481 ◽  
pp. 129-132 ◽  
Author(s):  
J.P. Mendez ◽  
F. Macias ◽  
M.P. Ariza

We present an assessment of the stability and dynamics of grain boundaries in graphene for different misorientation angles at finite temperature and up to extremely high temperatures, in particular, for a misorientation angle of 6.6, 14.1, 19.66, 27.8, 38.21 and 46.83. We report a high stability against annihilation up to extreme temperatures.

2006 ◽  
Vol 249 ◽  
pp. 127-134 ◽  
Author(s):  
Dominique Mangelinck

The effect of Pt and Ge on the stability of NiSi films has been examined. The addition of a small amount of Pt (5 at%) in the Ni film increases the disilicide nucleation temperature to 900oC leading to a better stability of NiSi at high temperatures. For Ni films on Si1-xGex with x=0.29 and 0.58, no NiSi2 was found after annealing at 850°C. The increase in thermal stability of NiSi has been explained in terms of nucleation concept. Calculated ternary phase diagrams allow to understand the effect of the third element (Pt or Ge) on the driving force for nucleation. The redistribution of this element can also be explained with the ternary phase diagrams.


2016 ◽  
Vol 714 ◽  
pp. 78-85
Author(s):  
Tomáš Melichar ◽  
Jiří Bydžovský ◽  
Ámos Dufka

This paper presents research into analysing the volume stability of composite materials based on a polymer-cement matrix. The attention was paid to the influence of extreme temperatures shocks. Materials of modified composition were gradually exposed to extreme temperatures and then cooled in furnaces. Cooling was carried out by two different ways, i.e. slow and rapid. Emphasis was placed on the aggregate type used – fine lightweight and dense. Also available materials from alternative resources which have positive effect on thermal stability of composites based on silicate matrix were considered.


2021 ◽  
Vol 12 (4) ◽  
pp. 710-717
Author(s):  
O. L. Baik ◽  
N. Y. Kyyak ◽  
O. M. Humeniuk ◽  
V. V. Humeniuk

Mosses are pioneer plants in post-technogenic areas. Therefore, the question of adaptive reactions of mosses from these habitats represents a scientific interest. The research is devoted to the study of adaptive changes in the metabolism of the dominant moss species Bryum caespiticium Hedw., collected in the devastated territories of the Novoyavorivsk State Mining and Chemical Enterprise (SMCE) “Sirka (Sulfur)” exposed to hyperthermia and insolation, which cause oxidative stress in plants. The influence of these stressors on the activity and thermal stability of antioxidant enzymes, hydrogen peroxide content, anion radical generation and accumulation of prooxidant components in moss shoots was studied. The activity and thermal stability of peroxidase and superoxide dismutase (SOD) were analysed forB. caespiticium moss from different locations of northern exposure at the sulfur mining dump No 1 in summer and autumn. We established the dependence of the activity of antioxidant enzymes of moss on the intensity of light and temperature on the experimental plots of the dump No 1. In summer, the highest activity and thermal stability rates of peroxidase and SOD were observed. Under the conditions of the experiment in shoots of В. caespiticium from the northern peak of the dump under the influence of 2 hours temperature action (+ 42 ºС) the most significant increase in peroxidase activity was found by 1.78 times and SOD by 1.89 times, as well as increase in its thermal stability by 1.35–1.42 times, respectively. The increase in peroxidase and SOD activity, as well as the increase in their thermal stability caused by hyperthermia were negated by pre-processing with a protein biosynthesis inhibitor cyclohexamide, which may indicate the participation of the protein-synthesizing system in this process. The effect of increasing the thermal stability of enzymes can be considered as a mechanism of adaptation of the protein-synthesizing system to the action of high temperatures. Increase in the activity and thermal stability of antioxidant enzymes is caused primarily by changes in the expression of stress protein genes, which control the synthesis of specific adaptogens and protectors. The obtained results indicate that the extreme conditions of the anthropogenically transformed environment contribute to the development of forms with the highest potential abilities. The mechanism of action of high temperatures is associated with the development of oxidative stress, which is manifested in the intensification of lipid peroxidation and the generation of superoxide anion radical. It was found that temperature stress and high insolation caused an increased generation of superoxide anion radical as the main inducers of protective reactions in the samples of B. caespiticium from the experimental transect of the sulfur mining heap. It is known that the synthesis of Н2О2 occurs under stress and is a signal to start a number of molecular, biochemical and physiological processes of cells, including adaptation of plants to extreme temperatures. It is shown that high temperatures initiate the generation of hydrogen peroxide. Increased reactive oxygen species (ROS) formation, including Н2О2, under the action of extreme temperatures, can cause the activation of signaling systems. Therefore, the increase in the content of Н2О2 as a signaling mediator is a component of the antioxidant protection system. It is determined that adaptive restructuring of the metabolism of the moss В. caespiticium is associated with the accumulation of signaling prooxidant components (diene and triene conjugates and dienketones). The increase in primary lipid peroxidation products, detected by us, under the action of hyperthermia may indicate the intensification of free radical oxidation under adverse climatic conditions in the area of the sulfur production dump, which leads to the intensification of lipid peroxidation processes. The accumulation of radical and molecular lipid peroxidation products are signals for the activation of protective systems, activators of gene expression and processes that lead to increased resistance of plants.


1990 ◽  
Vol 112 (1) ◽  
pp. 10-15 ◽  
Author(s):  
M. I. Flik ◽  
C. L. Tien

Intrinsic thermal stability denotes a situation where a superconductor can carry the operating current without resistance at all times after the occurrence of a localized release of thermal energy. This novel stability criterion is different from the cryogenic stability criteria for magnets and has particular relevance to thin-film superconductors. Crystals of ceramic high-temperature superconductors are likely to exhibit anisotropic thermal conductivity. The resultant anisotropy of highly oriented films of superconductors greatly influences their thermal stability. This work presents an analysis for the maximum operating current density that ensures intrinsic stability. The stability criterion depends on the amount of released energy, the Biot number, the aspect ratio, and the ratio of the thermal conductivities in the plane of the film and normal to it.


Author(s):  
Stephanie Saalfeld ◽  
Thomas Wegener ◽  
Berthold Scholtes ◽  
Thomas Niendorf

AbstractThe stability of compressive residual stresses generated by deep rolling plays a decisive role on the fatigue behavior of specimens and components, respectively. In this regard, deep rolling at elevated temperature has proven to be very effective in stabilizing residual stresses when fatigue analysis is conducted at ambient temperature. However, since residual stresses can be affected not only by plastic deformation but also when thermal energy is provided, it is necessary to analyze the influence of temperature and time on the relaxation behavior of residual stresses at elevated temperature. To evaluate the effect of deep rolling at elevated temperatures on stability limits under thermal as well as combined thermo-mechanical loads, the present work introduces and discusses the results of investigations on the thermal stability of residual stresses in differently deep rolled material conditions of the steel SAE 1045.


2021 ◽  
Vol 233 ◽  
pp. 02046
Author(s):  
Xiaoxue Fan ◽  
Ming Cheng ◽  
Xiaoning Zhang ◽  
Cunfang Wang ◽  
Hua Jiang

This paper aimed to evaluate the changes in the thermal stability of goat milk, cow milk and homogenized milk under different pH conditions. The results showed that goat milk was of type B milk, and the thermal stability were positively correlated with the pH value. But cow milk was of type A milk, the most stable pH of fresh milk was 6.9, while it was 6.7 for homogenized cow milk. Compared with cow milk, the acidification of goat milk was stronger due to heat. Therefore, in the process of milk production, the germicidal heating conditions of two different milk sources should be determined according to their thermal stability.


1989 ◽  
Vol 160 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C.A. Armiento ◽  
C. Jagannath

AbstractWe present a study of the structural stability of InGaAs/GaAs strained single quantum wells (SQW) grown with a variety of indium compositions and with well widths close to critical thickness values. The samples were grown by molecular beam epitaxy and were subjected to furnace annealing as well as ion implantation followed by rapid thermal annealing. Changes in low temperature photoluminescence linewidths were used to evaluate the stability of strained SQWs. We observed both strain relief, in wide SQWs and strain recovery, in higher indium composition narrow quantum wells which were partially relaxed (low dislocation density) as-grown.


1989 ◽  
Vol 173 ◽  
Author(s):  
Michiya Otani ◽  
Sugio Otani

ABSTRACTThe stability of the magnetic properties of dehydrogenated triaryl-methane resins was investigated both at room temperature and at elevated temperatures. A magnetic property different from that reported in a previous paper was found in the course of studying the reproducibility of synthesis. This new property was examined through a mechanical response of the resins to a set of permanent magnets.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S85-S88 ◽  
Author(s):  
M. Dekker ◽  
K. Hennig ◽  
R. Verkerk

The thermal stability of individual glucosinolates within five different Brassica vegetables was studied at 100°C for different incubation times up to 120 minutes. Three vegetables that were used in this study were <I>Brassica oleracea</I> (red cabbage, broccoli and Brussels sprouts) and two were <I>Brassica rapa</I> (pak choi and Chinese cabbage). To rule out the influence of enzymatic breakdown, myrosinase was inactivated prior to the thermal treatments. The stability of three glucosinolates that occurred in all five vegetables (gluconapin, glucobrassicin and 4-methoxyglucobrassicin) varied considerably between the different vegetables. The degradation could be modeled by first order kinetics. The rate constants obtained varied between four to twenty fold between the five vegetables. Brussels sprouts showed the highest degradation rates for all three glucosinolates. The two indole glucosinolates were most stable in red cabbage, while gluconapin was most stable in broccoli. These results indicate the possibilities for plant breeding to select for cultivars in which glucosinolates are more stable during processing.


Sign in / Sign up

Export Citation Format

Share Document