Effect of Different Grain Grading of Manufactured-Sands on Properties of Dry-Mixed Mortar

2014 ◽  
Vol 507 ◽  
pp. 429-433 ◽  
Author(s):  
Gui Feng Liu ◽  
Shi Chao Li ◽  
Zheng Fa Chen ◽  
Yan Long Qin

Manufactured-sands were divided into eight groups according to the grain size by the use of sieving method and the eight groups sands were made into eight groups dry-mixed mortar. Compressive strength and flexural strength of the eight groups mortar and the bonding strength of the mortar to polystyrene and ceramic tile were investigated in this paper, in order to know the influence of the grain grading of manufactured-sands on the properties of dry-mixed mortar. The test results showed that the compressive strength, flexural strength and the ratio of bending-compressive strength of dry-mixed mortar increased with the decreasing of the content of the finer sands and the increasing of the content of the coarser sands. The bonding strength of the mortar to polystyrene and ceramic tile first increased and then decreased with the decreasing of the content of the finer sands and the increasing of the content of the coarser sands. The results of this study illustrate that the performances of dry-mixed mortars with manufactured-sands of four group and five group are good.

2014 ◽  
Vol 584-586 ◽  
pp. 968-971
Author(s):  
Yi Sun ◽  
Ji Shu Sun ◽  
Yuan Ming Dou ◽  
Hong Liang Cui

The basic mechanical properties of the insulation board in external thermal insulation system are studied in this paper. According to the structure of the board, the relevant tests are designed, which includ the plate bearing capacity, the bond strength, the compressive strength and the flexural strength. The test results show that the security performance of the composite insulation board is high and bonding strength is good, compressive strength is high in the case of meeting the basic technical requirements. Besides, with the increase of the insulation board’s thickness, its flexural strength would increase.What’s more, due to the mesh effect on internal reinforcement, failure process has a certain ductility.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2017 ◽  
Vol 8 (4) ◽  
pp. 392-401 ◽  
Author(s):  
Hassan A.M. Mhamoud ◽  
Jia Yanmin

Purpose This study aims to focus on the resistance to elevated temperatures of up to 700ºC of high-performance concrete (HPC) compared to ordinary Portland concrete (OPC) with regards to mass loss and residual compressive and flexural strength. Design/methodology/approach Two mixtures were developed to test. The first mixture, OPC, was used as the control, and the second mixture was HPC. After 28 days under water (per Chinese standard), the samples were tested for compressive strength and residual strength. Findings The test results showed that at elevated temperatures of up to 500ºC, each mixture experienced mass loss. Below this temperature, the strength and the mass loss did not differ greatly. Originality/value When adding a 10 per cent silica fume, 25 per cent fly, 25 per cent slag to HPC, the compressive strength increased by 17 per cent and enhanced the residual compressive strength. A sharp decrease was observed in the residual flexural strength of HPC when compared to OPC after exposure to temperatures of 700ºC.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2937
Author(s):  
Huimin Chen ◽  
Chunyan Xie ◽  
Chao Fu ◽  
Jing Liu ◽  
Xiuli Wei ◽  
...  

Orthogonal test method was applied to analyze the strength properties of basalt-polypropylene mortar. The effect of basalt fiber length, polypropylene fiber length, basalt fiber volume content and polypropylene fiber volume content on the 28 d cube compressive strength and flexural strength were investigated. Test results show that comparing with flexural strength, the influence of basalt fiber length and polypropylene fiber length on compressive strength of mortar was greater than on flexural strength. The length of polypropylene fibers contributes the highest to the flexural strength. The effect of basalt fiber on mortar strength is the largest with 6 mm length and 4% content. Polypropylene fiber length has the greatest influence on the compressive strength of fiber mortar, followed by basalt fiber volume content. Volume content of polypropylene fiber has the greatest influence on flexural strength of fiber mortar, followed by polypropylene fiber length. According to the scoring of the efficacy coefficient method, the best ratio combination for compressive and flexural strength was the basalt fiber length of 9 mm, polypropylene fiber length of 6 mm, basalt fiber volume content of 4% and polypropylene fiber volume content of 4%. Compared with the blank samples, the 28 d compressive strength and 28 d flexural strength of the cement mortar samples were increased by 27.4% and 49% respectively. According to the test results, the properties of the fiber were analyzed and evaluated and the mechanism of fiber action and fiber microstructure were analyzed.


2014 ◽  
Vol 926-930 ◽  
pp. 645-648 ◽  
Author(s):  
Xu Rong Li ◽  
Hong Guang Ji ◽  
Jun Wang ◽  
Cheng Lin Song

In order to study the strength change of high strength concrete shaft lining structure in underground complex environment resisting composite salt damage erosion, C70 high strength concrete test specimens were made and composite salt disaster solutions of different concentrations were compounded. The test results show that the coefficient of compressive strength and flexural strength of high strength concrete increase in early corrosion and then decline. The strength of specimen declines more quickly in higher corrosion solution concentration in latter time. The change law of the flexural strength is more complex than the compressive strength. Composite salt disaster solutions have little effect for no damage high strength concrete.


2013 ◽  
Vol 652-654 ◽  
pp. 1181-1184
Author(s):  
Guo Qiang Xu ◽  
Zhi Guo You ◽  
Lin Gao ◽  
Dian Li Han

The influence of admixture of super-fine limestone powder and low-quality fly ash in different proportions on the fluidity and strength of cement mortar is studied. The test results show that the mortar fluidity increases with the increase of the super-fine limestone powder (the mixing amount of fly ash reduces), and the strength of cement mortar can improve when limestone powder and low-quality fly ash are combined admixed to a certain ratio. The maximum flexural strength of the 28d mortar is 9.8MPa and its maximum compressive strength is 42.2MPa, and at this time, the limestone powder accounts for 33.3% of the mineral admixtures. However, when the mixing amount of super-fine limestone powder is over a certain range, the strength of 28d cement mortar will reduce.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2020 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Indrayani Indrayani ◽  
Andi Herius ◽  
Arfan Hasan ◽  
Ahmad Mirza

Most of the construction uses concrete as the main building material because concrete has many advantages compared to other materials. Concrete has a high enough weight, various attempts were made to reduce the weight of the concrete for example using lightweight aggregates or concrete made without sand or concrete made hollow Innovations in the development of precast lightweight concrete are urgently needed at this time to support the development of development that is being carried out by the government. From the studies that have been carried out on lightweight concrete and fiber concrete, this research will develop the results of previous studies, namely by combining lightweight concrete and fiber concrete to obtain precast lightweight concrete. This research was conducted to find out how much influence the use of pumice and and fiber on compressive strength and flexural strength of precast lightweight concrete. Variations in the addition of a mixture of pumice with aggregate are divided into 4  comparisons, namely 0: 100, 20: 80, 40: 60, 60: 40, where each mixture is added 0.1% fiber from the volume of concrete, then printed in cube and beam molds.  Compressive tests were carried out on the cube and flexural tests were carried out on beams. From the test results was obtained that the addition of pumice to the concrete mixture can cause a decrease in compressive strength of the concrete from 202 kg/cm2 to 129 kg/cm2 whereas with the addition of fiber there is an increase in flexural strength is 24.48 kg/cm2. The specific gravity obtained is 1.664 gr/cm3 so this concrete can be classified into lightweight concrete.


2012 ◽  
Vol 170-173 ◽  
pp. 395-398
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Shu Jiang Zhao

The direct roof of B132 coal seam is conglomerate layer in a coal mine, which is cemented with gravels and sandstones and has brought great difficulty for tunnel supporting. It is necessary to study the grain size and strength characteristics of gravel in conglomerate layer for the mining of B132 coal seam safely and efficiently. The statistics and analysis of grain-size characteristics of gravel was carried out in this paper, including of the quantity and volume percent of gravel. Uniaxial compressive strength of gravel was tested with point load method. The test results show that uniaxial compressive strength of gravel is very high, especially the black gravels, whose compressive strength is commonly above 200 MPa and the highest even can reach more than 300 MPa.


Sign in / Sign up

Export Citation Format

Share Document