The Tilt Angle of the Solar Panels has the Highest Power

2014 ◽  
Vol 548-549 ◽  
pp. 612-616 ◽  
Author(s):  
Marut Khodphan

Photovoltaic is Boundless energy. The development of modern technology on solar cell and implementation for change solar energy are into electrical energy to serve as backup power. The installations of the solar cell was tilt angle about 10 degree,(EGCO, 2013). The researcher should be rechecked the proper tilt angle for Nakonratchasima. So, set up two test sets. Frist set can adjust the angle and the second set cannot adjust the angle. Set adjustable resistor for load 1 kΩ by adjusting resistor 10% -95% such as 10%,15%,20% etc. Measured voltage and current to be appropriate for the resistance and solar cell, which is equal to 75% or equal to 750 ohms for all tests. The energy from the solar cell be measured for a period of 12 days from 08.00 am - 16.00 pm. Record voltage and current both sets every 15 minutes from 5 degrees to 60 degree by adjust the angle 5 degrees per day. All the measured data to determine the data transfer in the horizontal plane. The research found that the proper tilt angle of the solar cell is 15 to 20 degrees for Nakonratchasima.

Author(s):  
Salim Azzouz ◽  
Johnny Blevins ◽  
Tyler Thomas ◽  
Makenzie Johnson ◽  
Clarke O’Connor ◽  
...  

Abstract A weather data collection study is currently conducted using a renewable energy training system. The system is composed of a LabVolt trainer, two sun tracking photovoltaic solar panels and a small wind turbine. The LabVolt training system is located in one of the McCoy School of Engineering laboratories, the solar panels and the wind turbine are located in the neighborhood of the Engineering building at Midwestern State University in Wichita Falls, Texas. A set of meteorological data collecting outdoor sensors to monitor the impact of weather conditions on the power generation of the sun-tracking photovoltaic solar panels and the wind turbine have been installed on the building roof. Weather parameters such as atmospheric temperature, pressure, humidity, and rainfall are monitored using a Davis Vantage Pro 2 data collecting system. A number of LabVIEW data acquisition cards and signal processing modules are used to monitor the sun-tracking photovoltaic solar panels’ output voltage, the wind turbine output voltage, the atmospheric temperature, the solar irradiance, and the wind direction, speed, and RPM. A voltage divider has been built to step down the 90V DC voltage produced by the solar panels to 12V DC voltage required for the trainer electrical circuits. A LabVIEW data processing program is used to create instantaneous graphic displays of the collected data on a monitoring screen. The LabVolt trainer is equipped with two charge controller electronic devices, one is used for the sun tracking photovoltaic solar panels, and one is used for the wind turbine. They are used to control the flow of electrical energy through a set of electrical loading devices and a set of storages batteries. Additionally, the LabVolt trainer is equipped with two kilowatt-hour-meters counting the electrical energy consumed by the electrical loads. The trainer is also equipped with two inverters transforming the 12 V DC voltage collected from both energy producing devices to 120 V that can be used by the electrical loading devices. A brief description of all used electronic components and devices is provided in the paper, as well a detailed experiment set-up with a procedure to run them. The project has been divided into three consecutive phases. The first phase dealt with connecting the solar panels, wind turbine, and data collecting sensors to the LabVIEW data acquisition software. The second phase is currently dealing with setting up the trainer solar and wind electricity providing circuits. In the third upcoming phase, it is expected that the data collected by the sensors will be gradually archived using Excel files and analyzed for weather data correlation purposes. It is also expected that the training system will be used to teach upcoming mechanical engineering students about how to set up an independent renewable energy system and the necessary equipment required to run it.


ROTOR ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 47
Author(s):  
Hattu P D Edwin ◽  
Wabang A Jhon ◽  
Tuati Ambros ◽  
Palinggi Aris

Electrical energy is a very important requirement for the community, along with the development of the era and technological advances that are urgently needed, the need for electrical energy is very large, while the source of electricity that is currently being used still uses energy derived from fossil fuels. As we know that the source of energy derived from fossils is very limited, therefore other energy sources are sought or we are more familiar with renewable energy, one of which is the energy source that comes from the sun, which is better known as solar cell. The electricity from this solar cell is very dependent on sunlight which must illuminate the solar panels so that solar energy can be converted into electrical energy. The output from these solar panels is in the form of voltage and electric current. Some factors that can affect the amount of output or output voltage of electric current in PLTS is, temperature, shadow, (cloud condition, and surrounding environment), and wind speed. Therefore, the purpose of this research is to find out how much the shadow effect on the output voltage and electric current produced by PLTS. It is expected that this research can increase the knowledge of energy derived from the sun in this case the solar cell and know the effect of the shadow on the output voltage and electric current from solar panels.The results showed that there was a shadow effect on voltage reduction and current strength in the PLTS system, namely the 10% shadow area and 12.44 volt DC solar panel current and 2.54 amperage, 100% area covering the voltage output panel and the current of solar panels 12.10 volt DC and 0.22 amperage. The area of the shadow that covers the solar panel affects the output voltage and the strong current of the battery that is the area of the shadow 10% voltage and strong current battery 12.35 volt DC and 18.54 amper, 100% area cover the output panel voltage and strong current battery 11.90 volt DC and 13.85 amperes The shadow area covering the solar panels influences the output voltage and current strength of the inverter, namely the area of the shadow 10% voltage and 226.4 volt AC inverter current and 0.97 amperage, 100% covering the output voltage panel and 220.2 volt AC and 0.66 amperage current. Keywords: Electrical energy, Solar cell, Shadow (cloud condition)


2020 ◽  
Vol 5 (2) ◽  
pp. 108-117
Author(s):  
Soni A Kaban ◽  
Muhamad Jafri ◽  
Gusnawati Gusnawati

Abstrak Energi surya merupakan salah satu energi yang bias dikonversi menjadi energi listrik dengan menggunakan panel surya (photovoltaic solar). Pada penelitian ini, dirancang panel surya dengan cermin datar sebagai reflektor scanning dengan empat buah reflektor pada empat sisi panel surya. Tujuan yang ingin dicapai dalam penelitian ini yaitu untuk mendapatkan keluaran panel surya yang optimal menggunakan cemin sebagai media reflektornya dan mendapatkan konfigurasi penempatan cermin untuk meningkatkan keluaran arus dan tegangan panel surya. Metode yang digunakan dalam penelitian ini adalah metode eksperimen dengan melakukan percobaan terhadap objek bahan penelitian dengan kemiringan reflektor cermin 30o, 45o, dan 60o. Dengan penambahan reflector cermin pada panel surya menyebabkan peningkatan keluaran panel surya pada pukul 12.00 Wita. Panel tanpa reflektor mengahasilkan Arus 2,1 Ampere, Tegangan 6,52 Volt. Panel reflektor 30o menghasilkan Arus 1,89 Ampere, Tegangan 6,25 Volt, Panel reflektor 45o, Arus 2,33 Ampere, Tegangan 6,15 Volt dan Panel reflektor Arus 3,02 Ampere, dan Tegangan 6,41 Volt.Kata kunci: Energi; fotovoltaik; panel surya; cermin. Abstract Solar energy is one of the energies that can be converted into electrical energy using solar panels (photovoltaic solar). In this study, a solar panel with a flat mirror as a scanning reflector was designed with four reflectors on the four sides of the solar panel. The objectives to be achieved in this study are to obtain optimal solar panel output using the mirror as a reflector medium and obtain a mirror placement configuration to increase the current and voltage output of the solar panels. The method used in this research is an experimental method by conducting experiments on the object of the research material with a mirror reflector tilt of 30o, 45o, and 60o. With the addition of a mirror reflector on the solar panel, it causes an increase in the output of the solar panel at 12.00 GMT+08. The panel without a reflector produces a current of 2.1 Ampere, a voltage of 6.52 volts. The 30o-reflector panel produces a current of 1.89 Amperes, a Voltage of 6.25 Volts, a 450 Reflector Panel, a Current of 2.33 Amperes, a Voltage of 6.15 Volts and a Current 3.02 Amperes of Reflector Panel, and a Voltage of 6.41 Volts. Keywords: Energy; photovoltaic; solar panel; mirror


2012 ◽  
Vol 253-255 ◽  
pp. 766-771 ◽  
Author(s):  
Maryam Khademi ◽  
Farzad Jafarkazemi ◽  
S. Ali Saadabadi ◽  
Ehsan Ghazi

In present research we propose a nonlinear solving method to obtain the optimum tilt angle for solar panels. For this purpose, solar radiation on tilted panels are estimated by applying anisotropic model in Maple and the maximum is obtained by solving parametric nonlinear equations with Sequential Quadratic Programming (SQP) algorithm. Comparing its results with prevalent calculation proved this method faster and more efficient. The used model is validated by comparing results with measured data on a 45o-tilted surface in Tehran, Iran. Results showed solar radiation on a tilted surface increases 32% by monthly adjustments, in comparison with a fixed horizontal surface.


2018 ◽  
Vol 159 ◽  
pp. 01059
Author(s):  
Teguh Putranto ◽  
Wasis Dwi Aryawan ◽  
Hesty Anita Kurniawati ◽  
Dony Setyawan ◽  
Sri Rejeki Wahyu Pribadi

The use of solar cell as the moving force for the ship's tour seems to be an important theme in action to create a sea transportation that is environmentally friendly as contribution of the Energy Efficiency Design Index (EEDI) for the decrease of pollutant levels. The electrical energy produced by solar cell is not as much energy from fuels so that the solar energy powered ship that can only be followed with a limited range and speed. This type of multi hull design like catamaran that has two symmetrical hull which is possible to have an more expansive main deck, small boat boundaries and good stability. The ship deck shape is going to contribute the extension of solar panels that can be used as a generator of power needed at the time of calculation of powering the ship. The analysis of the stability of the ship carried out numerically bu using references from the IMO regulations which require minimum value stability arm at certain angles. Load cases are definitely varied in 2 (two) conditions and compared in full and light load. The goal of this research is catamaran fishing vessel that have battery, solar panel, electric motor and all of supporting solar energy moving with speed 5 knots.


JOURNAL ASRO ◽  
2020 ◽  
Vol 11 (04) ◽  
pp. 19
Author(s):  
Sutrisno Sutrisno ◽  
As'ad Aris Mustofa ◽  
Wawan Kusdiana ◽  
Okol Sri Suharyo

Indonesia is a country traversed by the equator therefore get a high intensity of sunlight from morning to afternoon, it can be utilized by utilizing solar power to be converted into electrical energy, that is using solar panels. The performance of solar panels is strongly influenced by the intensity of sunlight. Therefore it is Necessary to design a tool in the form of solar tracker that can move the solar panels to the position of the solar panels can always follow the direction of the coming sun. Currently there is already doing research with solar tracker but limited to move only east and west course, this will be more optimal if solar tracker can follow sunshine from all direction. In this research we managed to modify the models of a solar tracker that can move in direction east, west, north and south following the sun.The conclusion of this research is Obtained with the use of solar tracking system 2 degrees of freedom can reach a power increase of 11% Compared to the solar tracking system 1 degree of freedom.   Keywords: Solar tracker 2 degrees of freedom, Solar cell.


2019 ◽  
Vol 8 (3) ◽  
pp. 3790-3794

modern society entirely depends on electricity for daily life. It has become the key component for modern technology, without electricity most of the equipments which we are using daily will not work at all. Internet is our gateway for knowledge and we also depend on it a lot to get the things which are surrounding us very easily. Under this situation we are not using proper electrical energy in case of street lights. Street lights are perfect solution for night base loads at most of the utility companies during 1930’s were seeking for night timed base loads especially coal based power plants. In India approximately 40 million street lights are there which will generates a total demand of 4000 MW. The cost required to satisfy this demand will also very high. In most of the places maintenance of street lights is very poor. Even though several technologies have used to automatic control of street light but they may turn into several failures because of high cost, improper maintenance, environmental effects on the components or some other major issues. In this paper a low cost maintenance free automatic street light control system is proposed which can be used with relay al well as without relay by using basic electronics components. A small experimental set up has done in laboratory and it can be concluded that the street light automatically turns on and off depends on the darkness of the environment. It can be implemented anywhere irrespective of environmental conditions without any maintenance


2018 ◽  
Vol 73 ◽  
pp. 01008
Author(s):  
Isworo Pujotomo ◽  
Retno Aita Diantari

To meet the needs of electrical energy, there are alternative energy sources such as solar power in a form of solar power plant. An important equipment aim to handle the of converting of solar energy into electrical energy are solar cells. The development of devices used to modify solar energy into electrical energy has been done since the mid-first half of the last century. Gradually the device is named by scientists with a photovoltaic device, or so-called solar cells (solar cell. This research tested polycrystalline solar module in sunny weather, bright cloudy and overcast. The test results show the effect of solar cell surface temperature to the value of its output power [1]. The condition of the polycrystalline solar panels will work optimally at the measured 32° C - 50° C temperature range on the surface of the solar cell.


Author(s):  
Mohamad Rifal ◽  
Nurmala Shanti Dera ◽  
Rifaldo Pido

Until 2012, the electrification ratio in Gorontalo Province was 64.35%. The potential of primary energy available in Gorontalo to generate electrical energy is quite large and has opportunities to be developed, be it hydro, solar, or geothermal. The use of sunlight as a source of electrical energy is carried out using solar cells or solar panels. Solar panels can be used to convert solar radiation into electrical energy. The electric voltage generated by the solar panels can be used to charge the battery. Besides, the potential for thermal energy from hot springs can also be used as electrical energy by using a Thermoelectric Generator (TEG). The purpose of this study is to test whether the use of thermoelectric placed on aluminum plates can increase the voltage output of the thermoelectric generator and compare the resulting output voltage between hybrid energy, (solar cell and thermoelectric generator). The method used in this study is to measure the output voltage generated by the solar panels and each TEG every 1 hour. Then measure the total voltage of the hybrid generator. The results showed that the voltage obtained from TEG utilization depends on the temperature received by the TEG. The highest voltage is at TEG 6 at 3.7V at 10.00. the highest hybrid voltage is 37.4 v. Sampai dengan tahun 2012 rasio elektrifikasi di Provinsi Gorontalo sebesar 64,35%[1]. Potensi energi primer yang tersedia di Gorontalo untuk membangkitkan energi listrik cukup besar dan mempunyai peluang untuk dikembangkan baik itu tenaga air, matahari maupun tenaga panas bumi. Pemanfaatan cahaya matahari sebagai sumber energi listrik dilakukan dengan menggunakan solar sel atau panel surya. Panel surya dapat dimanfaatkan untuk mengkonversi radiasi matahari menjadi energi listrik. Tegangan listrik yang dihasilkan oleh panel surya dapat dipakai untuk mengisi baterai. Selain itu juga Potensi energi panas dari sumber air panas juga dapat dimanfaatkan menjadi energi listrik dengan menggunakan Thermoelectric Generator (TEG). Tujuan dari penelitian ini yaitu menguji apakah penggunaan Termoelektrik yang diletakkan pada pelat almunium dapat meningkatkan output tegangan dari  thermoelektrik generator dan membandingkan tegangan output yang dihasilkan antara hybrid energy, (solar cell dan thermoelektrik generator). Metode yang dilakukan pada penelitian ini yaitu mengukur tegangan output yang dihasilkan oleh panel surya dan masing-masing TEG tiap 1 jam. Kemudian mengukur tegangan total pembangkit hybrid. Hasil penelitian menunjukan bahwa tegangan yang di dapatkan dari pemanfaatan TEG tergantung dari suhu yang di terima oleh TEG tersebut. tegangan paling tinggi berada pada TEG 6 sebesar 3.7V pada pukul 10.00. tegangan hybrid paling tinggi yaitu 37.4 v.


Solar ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 41-51
Author(s):  
Reza Hassanian ◽  
Morris Riedel ◽  
Nashmin Yeganeh ◽  
Runar Unnthorsson

In this study, recorded empirical data were applied with a practical approach to investigate the optimal tilt angle of the flat plate collectors facing south for a long period in Tehran, Iran. The data included 20 years of recorded average total radiation on the horizontal plane in Tehran’s meteorological station. Based on the previous studies, the annual optimum tilt angle for Tehran was estimated at 33 degrees annually; however, this estimation does not focus on the energy absorption and effectiveness of changing the tilt angle monthly, seasonally, and bi-annually via measured data. This paper aims to explain this distinction between various radiation receptions with different tilt angle adjustments. This study shows that annual solar cumulative radiation energy gained via a monthly tilt angle can be approximately 7% higher than that achieved with an annual tilt angle setup. Additionally, the seasonal and bi-annual tilt angles have about 6% more annual cumulative radiation absorption than the annual tilt angle setup. Moreover, with consideration of similar monthly received radiation, the results illustrate that the radiation gained with a monthly tilt angle set up was 20% greater in the summer months than an annual tilt angle adjustment.


Sign in / Sign up

Export Citation Format

Share Document