scholarly journals Effect of Post Curing, Fibre Content and Resin-Hardener Mixing Ratio on the Properties of Kenaf-Aramid Hybrid Composites

2014 ◽  
Vol 548-549 ◽  
pp. 7-11
Author(s):  
R. Yahaya ◽  
S.M. Sapuan ◽  
M. Jawaid ◽  
Z. Leman ◽  
E.S. Zainudin

Polymer composites reinforced with high strength synthetic fibres have been used for many engineering applications. Environmental and economic issues, encourage the exploration on the introduction natural-synthetic fibre hybrid composites. Mechanical properties are critical to composite performance and may due to the manufacturing process conditions. This study investigates the effect of post curing temperature, natural fibre content and resin-hardener mixing ratio on mechanical properties of kenaf-Kevlar hybrid composites. A full factorial design (23) was carried out to determine the effect these factors on the responses: flexural strength, flexural modulus and impact strength. A statistical study has been performed in order to determine the how the factors affect the responses. The study showed that post-curing temperature, kenaf content and resin-hardener mixing ratio gives significant effects on the mechanical properties of kenaf-Kevlar hybrid composites.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan-Erik Berg ◽  
Börje Hellstadius ◽  
Mikael Lundfors ◽  
Per Engstrand

AbstractChemithermomechanical pulp (CTMP) is often used in central layers of multiply paperboards due to its high bulk and strength. Such a CTMP should consist of well-separated undamaged fibres with sufficient bonding capacity. The basic objective of this work is to optimize process conditions in low-consistency (LC) refining, i. e. to select or ultimately develop new optimal LC refiner filling patterns, in order to produce fibrillar fines and improve the separation of fibres from each other while preserving the natural fibre morphology as much as possible. Furthermore, the aim is to evaluate if this type of work can be done at laboratory-scale or if it is necessary to run trials in pilot- or mill-scale in order to get relevant answers. First stage CTMP made from Norway spruce (Picea abies) was LC refined in mill-, pilot- and laboratory-scale trials and with different filling patterns. The results show that an LR1 laboratory refiner can favourably be used instead of larger refiners in order to characterize CTMP with regard to tensile index and z-strength versus bulk. A fine filling pattern resulted in CTMP with higher tensile index, z-strength and energy efficiency at maintained bulk compared to a standard filling pattern.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


Polymer ◽  
2020 ◽  
Vol 204 ◽  
pp. 122830
Author(s):  
Bin He ◽  
Boyao Wang ◽  
Zhanwen Wang ◽  
Shengli Qi ◽  
Guofeng Tian ◽  
...  

2019 ◽  
Vol 11 (22) ◽  
pp. 6462 ◽  
Author(s):  
Zhao ◽  
Fang ◽  
Wu ◽  
Zhang ◽  
Wang

In order to realize the resource utilization of bloom algae from Lake Chao, this study presents the use of fresh algae to improve the mechanical and biological properties of low-density polyethylene (LDPE). In this study, the algae and LDPE were used as raw materials, maleic anhydride grafted polyethylene (PE-g-MAH), polyethylene wax (PE-wax) and white oil, and glycerin were used as the compatibilizer, lubricant, and plasticizer, respectively. The single factor experiments were conducted with these three individual factors, and the response surface methodology technique was used to optimize the process conditions. In the single factor experiments, the mechanical properties of the composites increased with additions of PE-g-MAH, PE-wax/white oil, and glycerin. Both flexural strength and flexural modulus were maximized to optimize the preparation conditions. The optimum preparation conditions were found as follows: algae powder of 15.00 wt%, LDPE of 85.00 wt%, PE-g-MAH of 4.00 wt%, lubricant of 2.67 wt%, and glycerin of 3.00 wt%. This resulted in 11.60 MPa of tensile strength, 9.95 MPa of flexural strength, and 241.00 MPa of flexural modulus. The mechanical properties of composites were greatly improved compared with the absence of additives. In addition, compared with LDPE resin, the degradability of the composite was improved, and the weight loss rate was 7.73% after 6 months. The results recommended that the composites of the algae from Lake Chao and LDPE resin could be a useful material in the packaging field. Generally, the prepared composite particles can be used to produce foam products, packaging bags, or hard packing boxes with special shapes. It is more environmentally friendly, and more able to meet the challenges of sustainable development.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 258 ◽  
Author(s):  
Che Nor Aiza Jaafar ◽  
Muhammad Asyraf Muhammad Rizal ◽  
Ismail Zainol

The mechanical performance of silica modified epoxy at various concentration of sodium hydroxide for surface treatment of multi-axial kenaf has been analyzed. Epoxy resin with amine hardener was modified with silica powder at 20 phr and toughened by treated kenaf fiber that immerses in various concentrations of sodium hydroxide (NaOH) ranging from 0% to 9% of weight. The composite was analyzed through differential scanning calorimetry (DSC) to ensure complete curing process. The mechanical properties of the composites were analyzed through flexural test, Charpy impact test and DSC to ensure the complete curing process. DSC analysis results show epoxy sample was completely cured at above 73°C that verifies the curing temperature for preparation for the composite. Hence, 3% NaOH treated composite exhibits the best mechanical properties, with 10.6 kJ/m2 of impact strength, 54.1 MPa of flexural strength and 3.5 GPa of flexural modulus. It is due to the improvement of fiber-matrix compatibility. Analysis by SEM also revealed that a cleaner surface of kenaf fiber treated at 3% NaOH shown cleaner surface, thus, in turn, improve surface interaction between fiber and matrix of the composite. The composites produced in this work has high potential to be used in automotive and domestics appliances.


2018 ◽  
Vol 10 (3) ◽  
pp. 408-410
Author(s):  
Arun Premnath ◽  
Diwakar ◽  
Hemnath ◽  
Krishna Chaitanya ◽  
Karthik ◽  
...  

2018 ◽  
Vol 144 ◽  
pp. 02011
Author(s):  
Vithal Rao Chavan ◽  
K. R. Dinesh ◽  
K. Veeresh ◽  
Veerabhadrappa Algur ◽  
Manjunath Shettar

Composite materials for the most part depicted as the mixes of two or more materials that outcome in the unmistakable properties than that of guard materials. Fibre strengthened plastics have been all around utilized for get-together flying machine and transport key parts as a delayed consequence of their specific mechanical and physical properties, for example, high particular quality and high particular robustness. Another pertinent application for fibre maintained polymeric composites (particularly glass fibre strengthened plastics) is in the electronic business, in which they are utilized for passing on printed wiring sheets. The utilization of polymer composite materials is winding up being powerfully essential. The present work delineates the change and mechanical portrayal of new polymer composites including glass fibre fortress, epoxy and maple cellulose fibre. The starting late made composites are delineated for their mechanical properties. The composite spreads were set up by utilizing hand layup framework. The experiments were conducted on and studied the effect of post curing on hybrid composites. The result reveals that the samples only with natural fibre have more promising results compared with synthetic fibre. The synthetic fibres get wrinkled due to post curing were as no such visuals in the natural fibres.


2017 ◽  
Vol 48 (3) ◽  
pp. 580-598 ◽  
Author(s):  
Hande Sezgin ◽  
Omer B Berkalp

In this study, the effect of some fabric reinforcement parameters (fabric direction, yarn type and stacking sequence) on the mechanical properties of textile based hybrid composites are analysed by using full factorial experimental design method. The analysis of the results is achieved by using Minitab 17 software program. One factor (fabric reinforcement direction) with two levels (warp direction and weft direction) and two factors (yarn type and stacking sequence) with three levels (jute/glass, jute/carbon, glass/carbon and consecutive, low strength inside, high strength inside) are selected as the reinforcement design. Full factorial experimental design analysis results indicate that, the highest tensile and impact strength values among the experimental design are realised when samples are taken from the warp direction and E-glass/carbon combination is chosen as the yarn (material) type. Moreover, it is verified that while higher tensile strength is achieved by placing higher strength fabrics to the inner layers, higher impact strength is achieved by placing high strength fabrics to the outer layers of hybrid composite structures. Analysis of variance tables also show that at 95% confidence level, the effects of the factors are statistically significant ( p < 0.05).


2014 ◽  
Vol 591 ◽  
pp. 7-10 ◽  
Author(s):  
V. Santhanam ◽  
M. Chandrasekaran

Natural fibre reinforced composites have attracted the attention of research community mainly because they are turning out to be an alternative to synthetic fibre. Various natural fibres such as jute, sisal, palm, coir and banana are used as reinforcements. In this paper, banana fibres and glass fibres have been used as reinforcement. Hybrid epoxy polymer composite was fabricated using chopped banana/glass fibre and the effect of alkali treatment was also studied. It is found that the alkali treatment improved the mechanical properties of the composite.


2021 ◽  
Author(s):  
Hamdi LAOUICI ◽  
Asma Benkhelladi ◽  
Ali Bouchoucha

Abstract The main objective and the originality of this work are to create a hybrid-natural fibre composite by the RMS method. Hybrid composites are manufactured by combining two or more dissimilar kinds of fibre in a single matrix. In the first section, Response Surface Methodology (RSM) using a Box-Behnken experimental design and the Analysis of Variance (ANOVA) are applied to investigate the effects of the type of fibres, chemical treatment, volume fraction and treatment time on the mechanical properties (ultimate tensile strength and Young’s modulus) in the tensile quasi-static loading when used two resins namely, epoxy and polyester. In the studied range, statistical analysis of the results showed that selected variables had a significant effect on the mechanical properties, except the treatment time that has a very weak significance effect on the mechanical properties. Then, to maximize the mechanical properties, the optimal conditions coded by RSM were found: the type of fibres (X 1 ) of [-0.28 and -0.33], the chemical treatment (X 2 ) of -1, the volume fraction of fibre (X 3 ) of 1 and the treatment duration (X 4 ) of [-0.97 and -1] for epoxy resin matrix. Similarly, when used the polyester resin matrix; the type of fibres (X 1 ) of -0.26, the chemical treatment (X 2 ) of -1, the volume fraction (X 3 ) of 0.99 and the sinking time (X 4 ) of [-0.94 and -0.93]. The obtained optimum parameters were confirmed experimentally in the second section


Sign in / Sign up

Export Citation Format

Share Document