Analytical Methods for Determination a Load Capacity of Concrete-Filled Tubes under Axial Compression

2014 ◽  
Vol 633-634 ◽  
pp. 965-971 ◽  
Author(s):  
Igor Garanzha ◽  
Nikolay Vatin

In a paper are considered four existing analytical methods for determination a bearing capacity of concrete-filled tubes structures under axial compression. Analyzed approaches to the questions of a limit compression load calculation are able to withstand a composite element. Highlighted the fundamental features and similarities of discussed methods, and also their shortcomings affecting to the accuracy of the strength and stability computing results. On the particular example performed a results comparison of determination the bearing capacity by the four methods.

2011 ◽  
Vol 243-249 ◽  
pp. 1242-1247 ◽  
Author(s):  
Zong Ping Chen ◽  
Xiang Gang Zhang ◽  
Shi Qian Zhang ◽  
Jian Yang Xue

In order to reveal the performance of steel recycled concrete composite columns, 6 specimens were designed for axial compression loading experiment. And two factors which are recycled coarse aggregate replacement percentage and slenderness ratio of column are taken into consideration. The bearing capacity and load-displacement curves of composite columns are obtained. Based on the test, the failure patterns and the influence of recycled coarse aggregate replacement percentage and slenderness ratio to axial compression load-bearing capacity are analyzed. In the end, the calculation formula for axial compression load of steel recycled concrete composite columns is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiangang Niu ◽  
Wenming Xu ◽  
Jingjun Li ◽  
Jian Liang

Fiber-reinforced polymer (FRP) wrapping has become an attractive strengthening technique for concrete columns. However, the ingress of corrosion into the concrete through the gap of CFRP fiber greatly reduces the durability of concrete and the bearing capacity of specimens. Concrete canvas, a kind of corrosion-resistant and refractory material, is a promising method to enhance durability and carrying capacity. In this study, the concrete canvas (CC) and carbon fiber-reinforced polymer (CFRP) were used to jointly reinforce columns with square cross section, octagonal cross section, circular cross section, and elliptical cross section. The influence of section shape on the strengthening effect of the axial compression column was investigated by the axial compression test. The results showed that the section shape had a significant influence on the reinforcement effect of the axial compression column. The carrying load capacity and ductility coefficient of different columns follow this order: square column < oval-shaped columns < octagonal columns < circle columns. The increased amplitude of bearing capacity for the different columns with the increase of CC layers follows this order: square columns < oval-shaped columns < circle column < octagonal columns. Compared with the unconstraint columns, the bearing capacity of adopting two-layer CC columns increased by 129%, 155%, 150%, and 139% for the square, octagonal, circular, and elliptical columns, respectively. The octagonal column has the largest increase range. Compared with the unconstraint columns, the bearing capacity of adopting two-layer CC columns increased by 348%, 318%, 310%, and 296% for the square, octagonal, elliptical, and circular columns, respectively. The square column has the largest increase range. The stress concentration phenomenon of all section shapes was weakened after the CC was used. The application of the CC on CFRP-reinforced columns improves column ductility significantly, with some degree of increase in bearing capacity.


2011 ◽  
Vol 94-96 ◽  
pp. 1261-1270 ◽  
Author(s):  
Mei Hua Wang

In the case of small increase of cross-section, concrete column strengthened by circular steel tube can increase the bearing capacity greatly as well as ductility. This has resulted in engineering welcome. This paper studied the common work performance of reinforced concrete column strengthened by circular steel tube in three different conditions test of axial compression. The results show that outsourcing steel and core column can be achieved interaction. By strengthening, it can improve the load capacity of the concrete column as well as ductility. With the increase in initial load, although it has little effect on the bearing capacity of reinforced columns, it can affect the ductility to some extent. This paper can provide experimental basis for engineering applications.


2012 ◽  
Vol 204-208 ◽  
pp. 1066-1069
Author(s):  
Yan Jun Li ◽  
Ping Liu

Four specially shaped columns with HRB500 reinforcement were tested under low cyclic loading. The hysteretic curve, yield load, ultimate load, displacement ductility and rigidity degradation were compared in order to research the effect of axial compression ratio on ductility and bearing capacity of specially shaped column with HRB500 reinforcement. It is shown that the axial compression ratio has greater influence on ductility and bearing capacity. With the increase of axial compression ratio, the bearing capacity of HRB500 reinforcement concrete specially shaped column can be enhanced while the deformation capacity becomes worse. The hysteretic characteristic of specially shaped columns with HRB500 reinforcement is improved and the stiffness degeneration becomes slow with the decrease of axial compression ratio.


2017 ◽  
Vol 27 (9) ◽  
pp. 1416-1447 ◽  
Author(s):  
Liu Jin ◽  
Shuai Zhang ◽  
Dong Li ◽  
Haibin Xu ◽  
Xiuli Du ◽  
...  

The results of an experimental program on eight short reinforced concrete columns having different structural sizes and axial compression ratios subjected to monotonic/cyclic lateral loading were reported. A 3D mesoscopic simulation method for the analysis of mechanical properties of reinforced concrete members was established, and then it was utilized as an important supplement and extension of the traditional experimental method. Lots of numerical trials, based on the restricted experimental results and the proposed 3D mesoscopic simulation method, were carried out to sufficiently evaluate the seismic performances of short reinforced concrete columns with different structural sizes and axial compression ratios. The test results indicate that (1) the failure pattern of reinforced concrete columns can be significantly affected by the shear-span ratio; (2) increasing the axial compression ratio could improve the load capacity of the reinforced concrete column, but the deformation capacity would be restricted and the failure mode would be more brittle, consequently the energy dissipation capacity could be deteriorated; and (3) the load capacity, the displacement ductility, and the energy dissipation capacity of the short reinforced concrete columns all exhibit clear size effect, namely, the size effect could significantly affect the seismic behavior of reinforced concrete columns.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


2010 ◽  
Vol 163-167 ◽  
pp. 651-654
Author(s):  
Tian Hua Zhou ◽  
Shao Feng Nie ◽  
Xiang Bin Liu ◽  
Guang Yi Li

18 specimens of cold-formed steel three limbs built-up section members are tested under axial compression load in this paper. The section forms are divided into two categories: A and B. Load-displacement (P-Δ) curves and failure characteristics of specimens are obtained. The results show that: As to section A members, the failure characteristics of LC, MC and SC series of specimens are flexural-torsional buckling, torsional buckling and distortional buckling, local buckling and distortional buckling. As to section B members, the failure characteristics of LC, MC series of specimens are flexural buckling, while local buckling and distortional buckling for members of SC series.


Author(s):  
Ирина Рыбникова ◽  
Irina Rybnikova ◽  
Александр Рыбников ◽  
Aleksandr Rybnikov

One of the methods of improving the bearing capacity of bored piles is giving them a taper. The feature of these (wedge-type) piles is that under load they work "as a thrust" and transfer part of the load due to the normal component to the inclined side surface. Three sizes of tapered bored piles were tested, with the length of 4.5 m, head diameter 0.4; 0.5; 0.6 m and with cone angle 1o and 2,5o. The test results were compared with the test results of cylindrical piles, 4.5 m long, with head diameter 0.4 m and 0.6 m. It has been discovered that with the increasing cone angle, the bearing capacity of piles against the pressing load, especially the specific load capacity for 1 m3 of material, as compared to cylindrical piles, increases significantly. It has been determined that the larger is the diameter of the head of the pile, the higher is the bearing capacity against the horizontal load, and the bearing capacity against the pullout load is equal to the breakout force of a pile from the soil.


Sign in / Sign up

Export Citation Format

Share Document