Electrochemical Impedance Behavior of Various Composition Quaternary Ni Alloy in 3.5 Wt% NaCl

2015 ◽  
Vol 761 ◽  
pp. 407-411 ◽  
Author(s):  
Muhammad Zaimi ◽  
Mohd Asyadi Azam ◽  
Azizul Helmi Sofian ◽  
Kazuhiko Noda

Zinc and copper addition into electroless Ni-P alloy matrix produces quaternary Ni alloy that exhibits lower corrosion resistance behavior compared to Ni-P and Ni-Cu-P alloy in 3.5 wt% NaCl solution. The corrosion behavior of the alloy is previously studied using the anodic polarization curve measurement. The results show that the corrosion potential of different alloy composition is almost similar to each other for electroless Ni-Zn-Cu-P alloy. However, the surface resistance of the alloy needs to be confirmed by using electrochemical impedance spectroscopy. The alloy was first deposited on an iron substrate using electroless Ni alloy deposition method approximately similar thickness at different plating bath pH of 8.50 and 9.50. The Ni alloy coated substrate was used as working electrode immersed into a solution of 3.5 wt% NaCl. The electrochemical cell consists of Pt and Ag/AgCl/KCl (saturated) as counter and reference electrode respectively. Electrochemical impedance measurement was done at open circuit potential. The measurement started from 100 kHz to 10 mHz with 10 mV of sinusoidal perturbation applied to the cell. Other types of alloy including Ni-P, Ni-Cu-P and Ni-Zn-P, were compared with Ni-Zn-Cu-P alloy. From the results, the Ni-Zn-Cu-P exhibits the lowest corrosion behavior compared to other Ni alloy due to low charge transfer resistance (Rct) observed small inductive loop at low frequency region of the Nyquist plot. Furthermore, the Nyquist plot for Ni-Zn-Cu-P for pH 8.50 and 9.50 showed comparable result; hence, the effect of pH has less effect on corrosion resistance of the electroless Ni-Zn-Cu-P alloy.

2016 ◽  
Vol 835 ◽  
pp. 115-120
Author(s):  
Francis Mulimbayan ◽  
Manolo G. Mena

All materials which are intended to have in contact with food and other commodities produced or processed for human consumption are called food contact materials (FCM’s). Stainless steel (SS) – a widely known metallic FCM is used mainly in processing equipment, containers and household utensils. It is known for having numerous industrial and domestic applications worldwide due to its special characteristics of having notable corrosion resistance. However, this corrosion resistance is not all-encompassing since SS may still undergo degradation when subjected to a specific corrosion-inducing environment. SS may be classified according to its microstructure. If the atoms which make up the SS can be viewed as having a face-centered cubic structure, then the alloy is said to be austenitic. This SS grades include the conventional 300-series and the newly-developed 200-series. The former has superior corrosion resistance while the latter is far cheaper. In this study, the corrosion behavior of AISI 202 SS in two different levels of dissolved oxygen (O2) and three acid concentrations was investigated using electrochemical techniques, namely, open-circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS). As the concentration of citric acid is increased, the measured OCP values of the alloy decreased and the polarization resistance (Rp) decreased, indicating decrease in alloy stability and decline in the corrosion resistance, respectively. With regards to effects of dissolved O2, results revealed that increasing the level of dissolved O2 has consequently increased the polarization resistance and shifted the OCP to more positive values. All the generated Nyquist plots exhibited a depressed capacitive loops indicating that corrosion in the designated solution occurred with charge transfer as the rate-determining step.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
A. Fattah-alhosseini ◽  
M. Ranjbaran ◽  
S. Vajdi Vahid

Corrosion behavior of A356-10 vol.% SiC composites cast by gravity and squeeze casting is evaluated. For this purpose, prepared samples were immersed in H2SO4solution for 2 hrs. at open circuit potential. Tafel polarization and electrochemical impedance spectroscopy (EIS) were carried out to study the corrosion resistance of composites. The results showed that corrosion resistance of composites cast by squeeze casting is higher than that of the gravity cast composites. The micrographs of scanning electron microscope (SEM) clearly showed the squeeze casting composites exhibit a good dispersion/matrix interface when compared with composites produced by gravity casting.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Carmen Marina Garcia-Falcon ◽  
Tomas Gil-Lopez ◽  
Amparo Verdu-Vazquez ◽  
Julia Claudia Mirza-Rosca

Purpose This paper aims to analyze the corrosion behavior in Ringer solution of six commercially used Ni-based alloys that are present and commonly used as metallic biomaterials. Design/methodology/approach The specimens were received in the form of cylindrical ingots and were cut to get five samples of each brand with a cylindrical shape of 2 mm height to conduct the study. In this scientific research, the following techniques were used: open circuit potential, potentiodynamic polarization studies, and electrochemical impedance spectroscopy. Findings The study findings revealed the passivation tendency of the different specimens. Additionally, when the materials were compared, it was discovered that the decisive factor for high corrosion resistance was the chromium concentration. However, with similar chromium content, the stronger concentration in molybdenum increased the resistance. According to the results obtained in this investigation, the biological safety of the dental materials studied in Ringer solution was considered very high for specimens 1 and 2, and adequate for the other samples. Originality/value Metal alloys used as biomaterials in contact with the human body should be deeply investigated to make sure they are biocompatible and do not cause any harm. The corrosion resistance of an alloy is the most important characteristic for its biological safety, as all problems arise because of the corrosion process. There is scarce investigation in these Ni-based dental biomaterials, and none found in these commercially used dental materials in Ringer solution.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Mbouillé Cissé ◽  
Mohamed Abouchane ◽  
Tayeb Anik ◽  
Karima Himm ◽  
Rida Allah Belakhmima ◽  
...  

Electroless Ni-Cu-P alloy coatings were deposited on the ordinary steel substrate in an acidic hypophosphite-type plating bath. These coatings were characterized by a scanning electron microscope (SEM) and an X-ray diffraction. The micrograph shows that coating presents a nodular aspect and is relatively homogeneous and very smooth. The EDX analysis shows that the coating contains 12 wt.% of phosphorus element with a predominance of nickel element. In addition, the anticorrosion properties of the Ni-Cu-P coatings in 1 M HCl, 1 M H2SO4, and 3% NaCl solutions were investigated using Tafel polarization curves, electrochemical impedance spectroscopy, and SEM/EDX analysis. The result showed a marginal improvement in corrosion resistance in 3% NaCl solution compared to acidic medium. It also showed that the corrosion mechanism depends on the nature of the solution.


2013 ◽  
Vol 738 ◽  
pp. 87-91 ◽  
Author(s):  
Jin Ming Long ◽  
Xiu Zhang ◽  
He Zhong Pei

Zn-Ni alloy coatings were electrodeposited on low carbon steel substrate using a cyanide-free alkaline bath containing tetraethylenepentamine (TEPA) and triethanolamine (TEA) as complexing agents for Ni2+cations. Effect of TEA/Ni2+molar ratio on electrodeposition behavior, micromophology, Ni content and corrosion resistance of coatings were studied by means of SEM/EDS, polarization curve and electrochemical impedance spectroscopy (EIS), respectively. It was found that the deposition potential and elecctrochemical impedance of the cathode sample during the electrodeposition was influenced by the TEA/Ni2+molar ratio (TNmr) in the bath. The deposition potential shifts negatively and the impedance rises with increasing TNmrup to 2. The nickel content in Zn-Ni deposit was varied in a range from 16.81 to 19.04 wt.%. The dependence of cathodic current efficiency and depositing velocity of the coating on TNmrof plating bath were also determined. A fine-grained and smooth-faced coating was obtained at TNmr=2, which exhibited the highest corrosion resistance in 3.5% NaCl environment.


2009 ◽  
Vol 417-418 ◽  
pp. 29-32
Author(s):  
Qing Fen Li ◽  
Yu Dong Fu ◽  
Hai Dou Wang ◽  
Jun Wang

The microbiological influenced corrosion (MIC) behavior of the Cu-Ni alloy with or without Ni-P plating in the sterilized medium and sulfate-reducing bacteria (SRB) solution was investigated. Results show that severe pitting corrosion appeared on the uncoated specimens in both the sterilized medium and the SRB solution when the specimens coated with Ni-P plating were still in good condition. Since the Ni-P plating may offer both barrier and cathodic protection to the base metal. Besides, the structures of Ni-P plating and the passive film on the surface of the Ni-P plating are high uniform and amorphous without any structure defects. The non-crystalline structure may improve the corrosion resistance because it does not have crystalline defects such as dislocation, grain boundary, twin and so on which may cause corrosion easily. It is concluded that corrosion behavior of the Cu-Ni alloy with electroless Ni-P plating was improved greatly.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 3031-3036 ◽  
Author(s):  
FARYAD BIGDELI ◽  
SAEED REZA ALLAHKARAM

Composite coatings constitute a new class of materials which are mostly used for mechanical and tribological applications. The corrosion resistance of these composite coatings, however, has not been systematically studied and compared. In this study, electroless Ni – P composite coatings are formed on St 37 steel through the addition of nano-scale SiC particles to the plating bath. This work aimed to investigate the corrosion characteristics of electroless nickel composite coatings using electrochemical measurements which include polarization and electrochemical impedance spectroscopy tests. The morphology and structure of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The results showed that both electroless nickel and electroless nickel composite coatings demonstrated significant improvement of corrosion resistance in salty atmosphere.


2011 ◽  
Vol 105-107 ◽  
pp. 1797-1800
Author(s):  
Yu Ye Xu ◽  
Bi Lan Lin

Electrochemical impedance spectroscopy (EIS) technique was used to investigate the corrosion behavior of HRB400 reinforcing steel in Simulated Concrete Pore (SCP) solutions differently contaminated by bicarbonate ions and/or chloride ions. The corrosion kinetics parameters of the capacitance Y0-CPEdl, surface roughness n0-CPEdl and charge transfer resistance Rct of the electric double-layer capacitance of the interface of solution/HRB400 were analyzed and were compared to those of HPB235 reinforcing steel. The results show that the corrosion resistance index of HRB400 and HPB235 is increased with an increase in NaCl content to 0.1%, but that is decreased markedly for a larger NaCl content; and that of them is decreased largely with an increase in pH; the decrease extent of the corrosion resistance index of HRB400 with NaCl or pH is larger than that of HPB235; and the corrosion resistance of HRB400 is inferior to that of HPB235.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 521 ◽  
Author(s):  
Citlalli Gaona-Tiburcio ◽  
Marvin Montoya-Rangel ◽  
José A. Cabral-Miramontes ◽  
Francisco Estupiñan-López ◽  
Patricia Zambrano-Robledo ◽  
...  

AlCrN/TiSi, AlCrN/TiCrSiN and AlCrN/AlCrN + CrN coatings were deposited on Inconel 718 alloy by physical vapour deposition (PVD). The corrosion behaviour of uncoated and coated specimens was evaluated using electrochemical impedance spectroscopy (EIS) at open circuit potential in a 3.5 wt.% NaCl and 2 wt.% H2SO4 solutions. The EIS data acquired were curve fitted and analysed by equivalent circuit models to calculate the pore resistance, the charge transfer resistance and the capacitance. The Nyquist diagrams of all systems showed one part of the semicircle which could relate that reaction is a one step process, except for the AlCrN/TiCrSiN and AlCrN/AlCrN + CrN coatings in H2SO4 solution, for which two semicircles related to active corrosion in substrate alloy were found. However, from the Bode plots, it was possible to identify two the time constants for all systems exposed to NaCl and H2SO4 solutions. According to electrochemical results, the corrosion resistance of the AlCrN/TiSiN coating was better in the NaCl solution, whereas the AlCrN/AlCrN + CrN coating show better performance in the Sulphuric Acid solutions.


2011 ◽  
Vol 686 ◽  
pp. 21-25
Author(s):  
Xian Long Cao ◽  
Fu Sheng Pan ◽  
Hong Da Deng ◽  
Wei Cai

This present work investigated the corrosion behavior of AZ31 magnesium alloy substrates pre-treated with bis-[triethoxysilylpropyl] tetrasulfide silane modified with cerium nitrate. The corrosion behavior of the pre-treated substrates in 0.005M sodium chloride solutions was assessed by potentiodynamic polarization, open circuit potential and electrochemical impedance spectroscopy (EIS). The results showed that the silane pre-treatments improved the corrosion resistance of the AZ31 magnesium alloy substrates in the presence of chloride ions. Especially the addition of cerium nitrate played an important role in reducing the corrosion activity.


Sign in / Sign up

Export Citation Format

Share Document