High Temperature Ceramifying Behavior of SR/Al2O3 Composites

2010 ◽  
Vol 105-106 ◽  
pp. 168-170
Author(s):  
Yuan Lu Xiong ◽  
Qiang Shen ◽  
Fei Chen ◽  
Jin Zheng ◽  
Lian Meng Zhang

In this work, silicone/alumina composites with 33 wt.% silicone content are prepared by compression mould technique. TGA, XRD and SEM were used to characterize the ceramifying behavior when the samples were heated from 600 to 1600°C. XRD results suggest that the ceramic residue of SR could restrain the phase transformation of γ-Al2O3 below 1100°C, indicating that the chemical bonds preserve the mechanism strength of SR/Al2O3 composites under high temperature. The flexural strength increases from 18.19 MPa to 75.31 MPa with the increasing temperature from 600 to 1600°C, owing to the sintering reaction between SiO2 and Al2O3 forming mullite phase under higher temperature. It has low liner shrinkage after firing and nearly no macrocracks or deformation under any temperature, illustrating that the SR/Al2O3 composites can be used as organic fire-retardancy materials.

2020 ◽  
Vol 37 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Heike Bartsch ◽  
Sebastian Thiele ◽  
Jens Mueller ◽  
Dirk Schabbel ◽  
Beate Capraro ◽  
...  

Purpose This paper aims to investigate the usability of the nickel copper zinc ferrite with the composition Ni0.4Cu0.2Zn0.4Fe1.98O3.99 for the realization of high-temperature multilayer coils as discrete components and integrated, buried function units in low temperature cofired ceramics (LTCC). Design/methodology/approach LTCC tapes were cast and test components were produced as multilayer coils and as embedded coils in a dielectric tape. Different metallization pastes are compared. The properties of the components were measured at room temperature and higher temperature up to 250°C. The results are compared with simulation data. Findings The silver palladium paste revealed the highest inductance values within the study. The measured characteristics over a frequency range from 1 MHz to 100 MHz agree qualitatively with the measurements obtained from toroidal test samples. The inductance increases with increasing temperature and this influence is lower than 10%. The characteristic of embedded coils is comparable with this of multilayer components. The effective permeability of the ferrite material reaches values around 130. Research limitations/implications The research results based on a limited number of experiments; therefore, the results should be verified considering higher sample sizes. Practical implications The results encourage the further investigation of the material Ni0.4Cu0.2Zn0.4Fe1.98O3.99 for the use as high-temperature ferrite for the design of multilayer coils with an operation frequency in the range of 5-10 MHz and operation temperatures up to 250°C. Originality/value It is demonstrated for the first time, that the material Ni0.4Cu0.2Zn0.4Fe1.98O3.99 is suitable for the realization of high-temperature multilayer coils and embedded coils in LTCC circuit carriers with high performance.


2014 ◽  
Vol 809-810 ◽  
pp. 815-821
Author(s):  
Xiao Hu Hua ◽  
Xiao Gang Wang ◽  
Jia Qing Yang ◽  
Shu He Lu ◽  
Li Rong Deng ◽  
...  

Anthracite and bitumite were processed respectively at 1400°C,1700°C, 2000°C, 2200°C, 2400°C and 2600°C,and their chemical composition,resistivity,microstructure, phase composition,and the internal migration of molecular functional group were tested and characterized. The results indicate that moisture, ash and volatile in coal have gradually shifted and lost with the elevation of heat treatment temperature, while the higher temperature, the quicker and completer phase change. Heat treatment can make the coal transform from approximately insulative phase to conductive phase,. Furthermore, as the temperature increases, the conductive phase transformation effect is better. The higher the heat treatment temperature of coal, the more amorphous carbon transforming into crystalline carbon completely, but the less types of phases .


2008 ◽  
Vol 133 (4) ◽  
pp. 508-514 ◽  
Author(s):  
Matthew D. Taylor ◽  
Paul V. Nelson ◽  
Jonathan M. Frantz

Sudden pH decline (SPD) describes the situation where crops growing at an appropriate pH rapidly (within 1–2 weeks) cause the substrate pH to shift downward one to two units. ‘Designer Dark Red’ geraniums (Pelargonium ×hortorum Bailey) were grown in three experiments to assess possible effects of temperature on SPD. The first experiment tested the effect of four day/night temperature regimes (14 °C day/10 °C night, 18 °C day/14 °C night, 22 °C day/18 °C night, and 26 °C day/22 °C night) on substrate acidification. At 63 days after transplanting (DAT), substrate pH declined from 6.8 to 4.6 as temperature increased. Tissue phosphorus (P) of plants grown at the highest three temperatures was extremely low (0.10%–0.14% of dry weight), and P stress has been reported to cause acidification. It was not possible to determine if the drop in substrate pH was a singular temperature effect or a combination of high temperature and low P. To resolve this, a second experiment tested a factorial combination of the three highest temperatures from the first experiment and five preplant P rates (0, 0.065, 0.13, 0.26, or 0.52 g·L−1 substrate). Regardless of tissue P concentrations, which ranged from deficient to above adequate, substrate pH decreased with increasing temperature. At 63 DAT, in the 0.065 and 0.13 P treatments, tissue P was deficient and pH decreased with increasing temperature from 5.6 to 4.7 and 5.9 to 4.7, respectively. In the 0.26 P treatment, tissue P was adequate at the lowest temperature and there was no acidification. At the mid- and highest temperatures, tissue P was deficient and statistically equivalent, yet pH decreased to 5.2 and 4.7, respectively. In the highest P treatment, tissue P levels were unaffected by temperature, above adequate, and pH declined with each increase in temperature from 6.5 to 5.0. The results at 63 DAT once more showed that temperature acted independent of tissue P and caused geraniums to acidify the substrate. In the third experiment, the amount of acidity produced by roots of plants grown at the two highest temperatures used in the first two experiments was quantified. Plants grown at the higher temperature produced 28% more acid per gram dry root. The results herein indicate that high temperature can induce SPD by geranium.


Author(s):  
Gaurav Pandey

This paper deals with the effect of addition of various proportion of polypropylene (PP) fibre and rice husk on the properties of concrete. A lot of experiments were conducted by different authors to explore the effect of raw rice husk and PP fibre and rice husk on tensile, compressive, flexural strength under different temperature condition. The objective of these experiments was to study the effect of polypropylene fibre and raw rice husk at different varying content and to find the optimum content of such admixtures. Concrete specimens were tested at different curing level to check mechanical properties of concrete. A detailed study was carried out at different high temperature conditions. Result shows polypropylene fibre provide a scape matrix to scape excess vapour pressure developed at higher temperature along with reinforcing properties. Rice husk works as a great insulating agent and also enhances the inert properties of concrete. With the various advantages and disadvantages of PP fibre and RRH, this paper is focusing on how there can be an establishment of a certain proportion which makes concrete thermally insulated maintaining higher strength.


Author(s):  
K Das Chowdhury ◽  
R. W. Carpenter ◽  
W. Braue

Research on reaction-bonded SiC (RBSiC) is aimed at developing a reliable structural ceramic with improved mechanical properties. The starting materials for RBSiC were Si,C and α-SiC powder. The formation of the complex microstructure of RBSiC involves (i) solution of carbon in liquid silicon, (ii) nucleation and epitaxial growth of secondary β-SiC on the original α-SiC grains followed by (iii) β>α-SiC phase transformation of newly formed SiC. Due to their coherent nature, epitaxial SiC/SiC interfaces are considered to be segregation-free and “strong” with respect to their effect on the mechanical properties of RBSiC. But the “weak” Si/SiC interface limits its use in high temperature situations. However, few data exist on the structure and chemistry of these interfaces. Microanalytical results obtained by parallel EELS and HREM imaging are reported here.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4014
Author(s):  
Karol Prałat ◽  
Andżelika Krupińska ◽  
Marek Ochowiak ◽  
Sylwia Włodarczak ◽  
Magdalena Matuszak ◽  
...  

The objective of this study was to determine the requirements for steels used as construction materials for chemical apparatus operating at an elevated temperature and to correlate them with the properties of the tested steels. The experimental part examined the influence of the annealing process on the structure and properties of X2CrNiMoN22-5-3 (1.4462) and X2CrNiMoCuWN25-7-4 (1.4501) steel. Heat treatment was carried out on the tested samples at a temperature of 600 °C and 800 °C. Changes were observed after the indicated time intervals of 250 and 500 h. In order to determine the differences between the initial state and after individual annealing stages, metallographic specimens were performed, the structure was analyzed using an optical microscope and the micro-hardness was measured using the Vickers method. Potentiostatic tests of the samples were carried out to assess the influence of thermal process parameters on the electrochemical properties of the passive layer. An increase in the hardness of the samples was observed with increasing temperature and annealing time, the disappearance of magnetic properties for both samples after annealing at the temperature of 800 °C, as well as a significant deterioration in corrosion resistance in the case of treatment at a higher temperature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Shen ◽  
Qiang Zeng

AbstractIn the present paper, with using diverse methods (including the SEM, the XRD, the TPO, the FTIR, and the TGA) , the authors analysed samples of the major coal seam in Dahuangshan Mining area with different particle sizes and with different heated temperatures (from 50 to 800 °C at regular intervals of 50 °C). The results from SEM and XRD showed that high temperature and high number of pores, fissures, and hierarchical structures in the coal samples could facilitate oxidation reactions and spontaneous combustion. A higher degree of graphitization and much greater number of aromatic microcrystalline structures facilitated spontaneous combustion. The results from TPO showed that the oxygen consumption rate of the coal samples increased exponentially with increasing temperature. The generation rates of different gases indicated that temperatures of 90 °C or 130 °C could accelerate coal oxidation. With increasing temperature, the coal oxidation rate increased, and the release of gaseous products was accelerated. The FTIR results showed that the amount of hydroxide radicals and oxygen-containing functional groups increased with the decline in particle size, indicating that a smaller particle size may facilitate the oxidation reaction and spontaneous combustion of coal. The absorbance and the functional group areas at different particle sizes were consistent with those of the heated coal samples, which decreased as the temperature rose. The results from TGA showed that the characteristic temperature T3 declined with decreasing particle size. After the sample with 0.15–0.18 mm particle size was heated, its carbon content decreased, and its mineral content increased, inhibiting coal oxidation. This result also shows that the activation energy of the heated samples tended to increase at the stage of high-temperature combustion with increasing heating temperature.


Sign in / Sign up

Export Citation Format

Share Document