Utilization of CFB Fly Ash in Eco-Cement: Mechanical Properties and Microstructural Analysis

2010 ◽  
Vol 150-151 ◽  
pp. 885-889 ◽  
Author(s):  
Xiao Ming Liu ◽  
Yu Li ◽  
Ling Ling Zhang ◽  
Da Qing Cang

The disposal of circulating fluidized bed (CFB) fly ash has been a serious environmental problem in the development of our society. In this work, the feasibility of recycling CFB fly ash as a blended material incorporating blast furnace slag (BFS), clinker and gypsum for the preparation of Eco-cement has been investigated. The mechanical properties of CFB fly ash based Eco-cements, including CFB fly ash–clinker system, CFB fly ash–ground BFS system, and CFB fly ash–ground BFS–clinker system, were evaluated in this paper. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used to analyze the microstructural changes and the hydration products of the CFB fly ash based Eco-cement pastes. The results indicated that it is feasible to use CFB fly ash along with BFS and clinker to produce Eco-cement. The hydration products of CFB fly ash based Eco-cement are mostly ettringite and amorphous C-S-H gel, which are principally responsible for the strength and structure development of CFB fly ash based Eco-cement in the hydration process.

2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2018 ◽  
Vol 68 (329) ◽  
pp. 148 ◽  
Author(s):  
M. A. Maldonado-García ◽  
U. I. Hernández-Toledo ◽  
P. Montes-García ◽  
P. L. Valdez-Tamez

This study investigated the effects of the addition of untreated sugarcane bagasse ash (UtSCBA) on the microstructural and mechanical properties of mortars. The SCBA was sieved for only five minutes through a No. 200 ASTM mesh, and fully characterized by chemical composition analysis, laser ray diffraction, the physical absorption of gas, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Mortar mixtures with 0, 10 and 20% UtSCBA as cement replacement and a constant 0.63 water/cementitious material ratio were prepared. Fresh properties of the mortars were obtained. The microstructural characteristics of the mortars at 1, 7, 28, 90 and 600 days were evaluated by SEM and XRD. The compressive strengths of the mortars at the same ages were then obtained. The results show that the addition of 10 and 20% UtSCBA caused a slight decrease in workability of the mortars but improved their microstructure, increasing the long-term compressive strength.


2013 ◽  
Vol 807-809 ◽  
pp. 1140-1146 ◽  
Author(s):  
Yi Xuan Chen ◽  
Xiu Li Sun ◽  
Zhi Hua Li

The objective of this work is to investigate the stimulation effect of the addition of alkali on the fly ash and slag for stabilizing dredged silt. Based on the test results, a viable alternative for the final disposal of dredged silt as subgrade construction materials were proposed. For this purpose, several mixtures of dredged silt-fly ash-slag and alkali were prepared and stabilized/solidified. In this system, fly ash and slag were used as hardening agents (solidified materials) of dredged silt and alkali was used as activator of fly ash and slag. The shear strength of the mixture was tested by several direct shear tests. Furthermore, X-Ray Diffraction (XRD) analysis was used to determine the hydration products of the system. The specimens were tested in order to determine the shear strength changes versus hydration time and the alkali content. It is indicated that mechanical properties of solidified silt are improved significantly by addition of fly ash and slag stimulated by alkali.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2514
Author(s):  
Zhengning Sun ◽  
Jian Zhou ◽  
Qiulin Qi ◽  
Hui Li ◽  
Na Zhang ◽  
...  

This paper aimed to report the effects of fly ash (FA) on the mechanical properties and hydration of calcium sulfoaluminate-activated supersulfated cement (CSA-SSC). The CSA-SSC comprises of 80% granulated blast furnace slag (GBFS), 15% anhydrite, and 5% high-belite calcium sulfoaluminate cement (HB-CSA) clinker. The hydration products of CSA-SSC with or without FA were investigated by X-ray diffraction and thermogravimetric analysis. The experimental results indicated that the addition of FA by 10% to 30% resulted in a decrease in the rate of heat evolution and total heat evolution of CSA-SSC. As the content of FA was increased in the CSA-SSC system, the compressive and flexural strengths of the CSA-SSC with FA after 1 day of hydration were decreased. After 7 days of hydration, the compressive and flexural strength of CSA-SSC mixed with 10 wt.% and 20 wt.% of FA rapidly increased and exceeded that of ordinary Portland cement (OPC), especially the flexural strength. Moreover, the compressive strength of CSA-SSC mixed with 30 wt.% of FA after 90 days of hydration was close to that of OPC, and flexural strength of CSA-SSC mixed with 30 wt.% of FA after 7 days of hydration was close to that of OPC. The hydration products of the CSA-SSC and CSA-SSC mixed with FA were mainly ettringite and calcium silicate hydrate (C-S-H).


2010 ◽  
Vol 168-170 ◽  
pp. 518-522 ◽  
Author(s):  
Zhi Hua Ou ◽  
Bao Guo Ma ◽  
Shou Wei Jian

Fourier Transform Infrared Spectroscopy (FT-IR), thermal analysis and X-Ray Diffraction (XRD) are commonly performed to study the hydration products in cement pastes. The three methods were compared in this frame to detect products of cement hydration at different ages, especially at early ages (before 24h ages). The results indicate from the present experiment that CH (Calcium hydroxide) can be detected by three methods at all ages; C-S-H can be distinguished by FT-IR at all ages; ettringite may be detected by FT-IR before 24h ages and by XRD at all ages; and monosulphate can be detected by FT-IR before 24h ages. The process of cement hydration, characterized by formation and development of some hydration products, can be clearly observed by three methods. FT-IR is suggested for detecting the major hydration products before 24h ages, FT-IR and XRD are suggested for detecting the major hydration products after 24h ages, and thermal analysis is suggested for analyzing the degree of hydration quantitatively.


2008 ◽  
Vol 368-372 ◽  
pp. 1426-1428
Author(s):  
Hong Xia Lu ◽  
Tie Cui Hou ◽  
Zhang Wei ◽  
Li Jian Li ◽  
Rui Zhang ◽  
...  

The characteristic of Angang blast furnace slag was studied by X-ray fluorescence spectrometry, DSC, X-ray diffraction and SEM. SiO2-Al2O3-CaO system glass-ceramics have been obtained successfully from slag with other additives. The properties of slag-based glass-ceramics were analyzed in this paper. It has been found that nucleation temperature is in the range of 600~700 °C, and crystallization temperature is in the range of 850~950 °C. The crystals phase is 2 CaO⋅ Al2O3⋅ SiO2. The chemical and mechanical properties of slag-based glass-ceramics are superior to the properties of clay brick.


2012 ◽  
Vol 517 ◽  
pp. 363-366 ◽  
Author(s):  
Li Guang Xiao ◽  
Feng Luo ◽  
Rui Bo Li ◽  
Chang Yu Liu

Magnesium slag cementitious material was prepared successfully using the magnesium slag-furnace slag-clinker system and different activators in this paper. The effect of activator on the mechanical property of the material was studied. The hydration and microstructure of this composite cement were analyzed by X-ray diffraction and scanning electron microscopy and the interaction mechanism was researched. The results show that the activity of magnesium slag was enhanced significantly by adding a small amount of activator. Combined activators have the best effect. The hydration products of magnesium slag cementitious materials mortar were C-S-H, Aft and Ca (OH)2 and so on.


2013 ◽  
Vol 811 ◽  
pp. 240-243
Author(s):  
Guo Xian Ma ◽  
Hai Ying Zhang

APC (air pollution control) fly ash, generated in incineration process of municipal solid waste, is regarded as a hazardous waste because of enrichment of heavy metals. In this work, stabilization of the ash with cement was studied. In addition, XRD analysis of the cement stabilized body was performed as a function of conservation time period. It was It was found that the hydration products cement fly ash and other particles together, which rises with increase of the cement / ash ratio and duration of conservation. Major mineralogical compositions CaCO3, Ca (0H)2 and C-H-S hydration products. Content of Ca (0H)2 and C-H-S rises with increase of conservation period and cement / ash ratio.


2021 ◽  
Author(s):  
Vijayasarathy RATHANASALAM ◽  
Jayabalan PERUMALSAMI ◽  
Karthikeyan JAYAKUMAR

This work presents a novel way to examine the characteristics of fly ash, copper slag (CPS) along with the addition of Ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS) based Geopolymer Concrete (GPC) for various molarities (10M, 12M and 14M). In GPC, fly ash was replaced with UFGGBFS (5 %, 10 % and 15 %) and copper slag was used as fine aggregate. Mechanical Characterization such as split tensile, flexural strength, workability and water absorption were conducted . GPC characterization and microstructural behaviour was studied  by examining X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). From experimental results this study concludes that with a rise in molarity of GPC, along with incorporation of UFGGBFS, improved the performance, densification and strength of GPC.


Sign in / Sign up

Export Citation Format

Share Document