Arsenic Removal from Wastewater Using Adsorptive Mediums

2011 ◽  
Vol 189-193 ◽  
pp. 404-409
Author(s):  
Fu Quan Peng ◽  
Zhen Cheng Xu ◽  
Jian Hong Huang ◽  
Qing Wei Guo ◽  
Feng Nie

Different adsorptive mediums and adsorbents’ compounds were chosen to remove arsenic from Yangzonghai Lake wastewater. Results showed that Ca(OH)2, attapulgite, bentonite, LDHs these adsorptive mediums had adsorptive capacities of less than 2.5 mg/g of As removal and it took long time for sediment before monitoring; adsorbents compounds’ results showed Fe2O3 and quartz sands had best removal rate and quartz sands had little removal of arsenic. Both strong anion resin and hydrated ferrous oxide-loaded on polystyrene diethanolamine resin(designated as PDR-HFO) can decrease As concentration to less than 0.01 mg/L reaching national standards for arsenic; anions such as SO42- can not be removed when strong anion resin was regenerated causing its loss of exchange ions; PDR-HFO exhibited excellent adsorptive properties and recyclability.

2019 ◽  
Vol 9 (4) ◽  
pp. 4119-4125

Arsenic present by nature as metalloid, having transportability in the environment via diverse sources. Because of both natural processes and anthropogenic activities, arsenic is found in environmental water sources. The aim of this study is to design ion-imprinting-based cryogel adsorbents for the removal of arsenic species from environmental waters. Since trivalent arsenic exhibit a high afgfinity for sulfhydryl groups, cysteine-based functional monomer, i.e. MAC, was synthesized and MAC–As(III) complex was prepared. Ionimprinted polymeric adsorbents were fabricated via cryopolymerization. Elemental analysis studies have shown that the cryogel monolith contains 192.8 μmol/g mol MAC/g polymer. The maximum adsorption capacity of ion-imprinted cryogels at an initial arsenic concentration of 10 ppm was found to be 372.5 μg/g at pH 8.0. Arsenic removal rate of the imprinted cryogels from environmental water sample was determined as 94.8% In the studies carried out for the removal of arsenic from the environmental waters, 94.8% removal efficiency was achieved. Reusability assays of ion-imprinted cryogels were performed and there was no significant decrease in adsorption capacity.


2011 ◽  
Vol 356-360 ◽  
pp. 1427-1432
Author(s):  
Zhi Yan Lu ◽  
Qing Hai Guo

The leachate from the Zixiaguan landfill of Wuhan City contains a lot of undesirable or toxic chemicals, among which arsenic may have the most serious threat to environment and human health. Lowering the arsenic concentration in the leachate is therefore of extreme importance. In this study, natural sediments obtained from Wuhan City, including clay, silty soil and silty sand, were used as low-cost sorbents to remove arsenic from solution. The results of the batch sorption experiments indicate that the sorption processes of clay and silty sand match well with linear isothermal sorption model, while that of silty soil is in good accordance with Langmuir isothermal sorption model. Among the three sorbents, clay has the best ability for arsenic removal from solution. Further experiments were carried out to determine the optimum sorption conditions for clay sorbent, the results showing that as the ratio of sorbent dosage to solution volume is 25.0 g/L, the reaction time is 120 min, and the pH of solution equals 7.0, the removal rate of arsenic from the leachate by clay sorbent reaches the highest value of 99.3 %.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 303-310 ◽  
Author(s):  
S.-H. Yi ◽  
S. Ahmed ◽  
Y. Watanabe ◽  
K. Watari

Conventional arsenic removal processes have difficulty removing low concentrations of arsenic ion from water. Therefore, it is very hard to comply with stringent low levels of arsenic, such as below 10 μg/L. So, we have developed two arsenic removal processes which are able to comply with more stringent arsenic regulations. They are the MF membrane process combined with chemical sludge adsorption and NF membrane process equipped with the vibratory shear enhanced process (VSEP). In this paper, we examine the performance of these new processes for the removal of arsenic ion of a low concentration from water. We found that chemical sludge produced in the conventional rapid sand filtration plants can effectively remove As (V) ions of H2AsO4- and HAsO42- through anion exchange reaction. The removal efficiency of MF membrane process combined with chemical sludge adsorption increased to about 36%, compared to MF membrane alone. The strong shear force on the NF membrane surface produced by vibration on the VSEP causes the concentration polarization layer to thin through increased back transport velocity of particles. So, it can remove even dissolved constituents effectively. Therefore, As (V) ions such as H2AsO4- and HAsO42- can be removed. The concentration of As (V) ions decreased from 50 μg/L to below 10 μg/L and condensation factor in recirculating water increased up to 7 times by using NF membrane equipped with VSEP.


2013 ◽  
Vol 690-693 ◽  
pp. 1013-1019
Author(s):  
Xiao Juan Chen ◽  
Liu Chun Yang ◽  
Jun Feng Zhang ◽  
Yan Huang

Calcium sulfate whisker (CSW) was prepared through the method of cooling recrystallization. In an attempt to develop its new application in environmental protection, we investigated the effect of calcination on the material properties and arsenic uptake performance of calcium sulfate whisker anhydrate (CSAW), which was obtained from CSW calcined at 600 °C for 2 h. Moreover, XRD, SEM, optical microscope, and FT-IR were used to characterize CSW samples. It was found that calcination played an important role in the whisker structure through changing the content of crystal water and the morphology. The CSAW material exhibited a high removal rate of As3+/As5+under strongly alkaline condition.


2015 ◽  
Vol 16 (1) ◽  
pp. 115-127 ◽  
Author(s):  
P. Dhanasekaran ◽  
P. M. Satya Sai ◽  
C. Anand Babu ◽  
R. Krishna Prabhu ◽  
K. K. Rajan

Arsenic is a toxic element found naturally in groundwater. Due to its carcinogenicity, risk for heart diseases and diabetes, arsenic needs to be removed from groundwater for potable application. ‘Anjili’ tree sawdust was chemically modified with ferric hydroxide and activated alumina (SFAA) and used as an adsorbent for the removal of arsenic from groundwater. The adsorbent was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) to study the pore structure and surface functional groups. Effect of contact time, initial concentration, pH, particle size and temperature was studied. Arsenic adsorbed by SFAA followed Freundlich adsorption isotherm. Maximum sorption of arsenic by SFAA adsorbent occurred at pH 6.5. Arsenic sorption kinetics followed a pseudo-second-order model. The maximum sorption capacity at 303 K was found to be 54.32 mg/g for As(III) and 77.60 mg/g for As(V). Interference of other ions on the adsorption was in the order of PO43− > SO42− > HCO3− > NO3−.


2007 ◽  
Vol 329 ◽  
pp. 439-444 ◽  
Author(s):  
Kiyoshi Suzuki ◽  
Tetsutaro Uematsu ◽  
Manabu Iwai ◽  
Shinichi Ninomiya ◽  
Sadao Sano ◽  
...  

A new complex grinding method named Ultrasonic Electrodischarging Grinding Method (US-ED-G in short) is described. In the US-ED-G, ultrasonic grinding and ED grinding are simultaneously carried out on an electrically conductive workpiece with a metal bond grinding wheel. When compared with other complex grinding methods, the US-ED-G is remarkably effective in reducing grinding force a great deal and maintaining grinding ability of a wheel for a long time in efficient grinding of extremely hard-to-grind ceramic materials like TiB2. A stock removal rate of 200mm3/min and a grinding ratio of 110 have been attained by selecting appropriate conditions in US-ED-G of TiB2. A compact and rigid ultrasonic attachment is also described, which was developed as a removable tool for carrying out US grinding and US-ED-grinding on a machining center or a grinding center.


2013 ◽  
Vol 634-638 ◽  
pp. 249-253 ◽  
Author(s):  
Meng Nan Lu ◽  
Aleksandar N. Nikoloski ◽  
Pritam Singh ◽  
Dale Parsonage ◽  
Radhanath Prasad Das ◽  
...  

A novel method for preparation of iron oxyhydroxide materials, involving aqueous precipitation followed by microwave assisted aging is investigated. The produced materials are characterized by XRD, SEM, EDX and TEM spectroscopy and BET analysis. The materials show physical characteristics dependent on preparation procedure. The adsorptive properties of the materials for arsenic are studied by batch adsorption techniques. It is found that the rate of arsenic upload depends strongly on the degree of crystallinity of the materials. The adsorption capacity is approximately 55 mg/g. The physical characterization of the arsenic loaded adsorbents show that the adsorption process modifies the morphology of the materials. Over 4% of arsenic atoms are incorporated into the particle matrix.


2007 ◽  
Vol 56 (9) ◽  
pp. 147-155 ◽  
Author(s):  
B. Jiménez

Sludge reuse for agricultural production or soil reclamation is a common practice in several countries, but it entails risks if not properly performed. One such risk is the dissemination of helminthiases diseases. As a consequence, international criteria and national standards set values to limit their content in biosolids. However, little information is available on how to inactivate helminth ova from sludge, particularly when a high content is involved as is the case in the developing world. Moreover, treatment criteria are based on a limited number of studies dealing with local characteristics that, when applied to the conditions in developing countries, produce poor results. This is because design criteria were developed for Ascaris (a kind of helminth) while sludge contains a variety of genera. In addition, much information on helminth ova was produced a long time ago using inaccurate analytical techniques. This paper summarizes research and recent technical information from the literature concerning: (a) the general characteristics of helminth ova; (b) the common helminth ova genera found in sludge; (c) the main removal and inactivation mechanisms, (d) the processes that have proven effective in practical conditions at inactivating helminth ova; and (e) analytical techniques used to enumerate these pathogens.


2017 ◽  
Vol 751 ◽  
pp. 766-772 ◽  
Author(s):  
Phitchaya Muensri ◽  
Supamas Danwittayakul

Arsenic can be found in groundwater that is harmful to human beings. In this research, we present the potential uses of ZnO microparticles, ZnO and TiO2 nanoparticles to removal arsenic in groundwater. The experiments of %arsenic removal upon using ZnO microparticles ZnO and TiO2 nanoparticles were conducted in 25 mL of sample volume with 0.05 g of nanoadorpbents at pH 6. We found that the efficiency of arsenic adsorption increased with a reduction of particle size of theadsorbents. Upon using nanoadsorbents to remove arsenic from the solutions with the concentrations of 200-2000 ppb, we found that the %removal of arsenic decreased from 100% to 84% for ZnO nanoparticles and 100% to 97% for TiO2 nanoparticles. Adsorption capacities upon using ZnO and TiO2 nanoparticles were 0.85 and 0.99 mg of arsenic/g of sorbents, respectively. TiO2 nanoparticles exhibited a better adsorption ability to arsenic than that ZnO because TiO2 nanoparticles had a smaller average particle size and larger surface area allowed the adsorption of hydroxyl groups on the surface that could bond with in coming HAsO42- via hydrogen bonding resulting in a better arsenic adsorptive capacity.


2014 ◽  
Vol 225 (5) ◽  
Author(s):  
Shimin Zhou ◽  
Di Wang ◽  
Haoyang Sun ◽  
Jitao Chen ◽  
Songhai Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document