Evaluation of HMA with Coal Gangue Coarse Aggregate

2011 ◽  
Vol 199-200 ◽  
pp. 209-215 ◽  
Author(s):  
Li Ying Yang ◽  
Yi Qiu Tan ◽  
Hao Liu ◽  
Yu Ming Dong

Coal gangue is the waste of coal mining. It is discharged and stacked all around the mine and the dust pollution has become a public hazard. This paper commits an investigation on the asphalt mixture which takes advantage of coal gangue as coarse aggregate. The physical-mechanical performances of coal gangue aggregate are presented and the result indicates that coal gangue aggregate can meet the specifications except the content of the Flat and Elongate particles (F&E content). By controlling the rational content of F&E in the mixture, different types of asphalt mixes with different percentage of coal gangue coarse aggregate are tested and the overall performance of asphalt mixture is investigated. The result testifies that the asphalt mixture containing coal gangue has the equivalent performance with limestone mixture. It is observed that the coal gangue used as coarse aggregate can guarantee the properties of HMA. Thus the HMA can be used in asphalt pavement.

CONSTRUCTION ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 44-53
Author(s):  
S. M. Shahnewaz ◽  
Khairil Azman Masri ◽  
N. A. A. A. Ghani

Nowadays porous asphalt pavement increase usage other than the traditional type of asphalt pavement. In that sense porous asphalt specially use in the parking areas and walk ways for pedestrian. There are diverse ways that has been done in order to stick up to permanent degradation such as adding fibers and modifiers like polymers, chemical modifiers, expandars, oxidants and antioxidents, hydrocarbons and antistripping to enhance the fatigue and service life of the pavement. To use these type of additives in porous asphalt pavement some additive increase the mechanical performance of porous asphalt mixture and improve the serviceability of the pavement. Digital image processing use these type of pavement to reduce the air void of the asphalt mixture and increase the physical properties of the porous asphalt pavement. This review paper mainly discuss the overall performance and advantage of porous asphalt using different types of additives.


2011 ◽  
Vol 97-98 ◽  
pp. 290-296
Author(s):  
Wei Guang Li ◽  
Zhi Dong Han ◽  
Zhen Bei Lv ◽  
Yan Hong Duan

It is important to reduce asphalt mixture strong absorption characteristics to improve anti-rutting ability and reduce the urban heat island effect. This paper firstly studies the suction and exothermic regular pattern of existing three types, five kinds of asphalt pavement structure. It turns out that there are differences in suction and exothermic characteristics of different types of pavement structure. Suspension close-grained type structure has higher adiabatic heating; gap-type skeleton has faster speed of suction and exothermic; and dense skeleton has more total quantity of heat storage. Accordingly, test and analysis of cooling effect of Gap-type skeleton asphalt pavement has conducted by adopting smear reflective materials to reduce reflectance and surface adding insulation materials, The results show that reducing reflectivity is the best way which can reduce by 5 centigrade around. In addition , improving effectiveness has also been studied by adding light-colored stone partly replacing mineral aggregate, and substituting busing mullite for aggregate below2.36 mm is the best cooling way ,which can reduce by 3.3 centigrade.


Author(s):  
Baoshan Huang ◽  
Guoqiang Li ◽  
Dragan Vukosavljevic ◽  
Xiang Shu ◽  
Brian K. Egan

This paper presents a laboratory study in which the blending process of reclaimed asphalt pavement (RAP) with virgin mixture was analyzed through controlled experiments. One type of screened RAP was blended with virgin (new) coarse aggregate at different percentages. A blended mixture containing 20% of screened RAP was subjected to staged extraction and recovery. The result from this experiment indicated that only a small portion of aged asphalt in RAP actually participated in the remixing process; other portions formed a stiff coating around RAP aggregates, and RAP functionally acted as “composite black rock.” The resulting composite layered structure was desirable to improve the performance of the hot-mix asphalt mixture.


2015 ◽  
Vol 73 (4) ◽  
Author(s):  
Ekarizan Shaffie ◽  
Juraidah Ahmad ◽  
Ahmad Kamil Arshad ◽  
Dzraini Kamarun

This paper presents the potential benefits of nanopolyacrylate (NPA) for the asphalt mixtures used on pavement. This research evaluates the resilient modulus performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified bitumen mix (UMB) and nanopolyacrylate modified bitumen mix (NPMB). Nanopolyacrylate polymer modified bitumen was prepared from addition of 6 percent of NPA polymer into asphalt bitumen. Resilient modulus results from Resilient Modulus test were determined to evaluate the performance of these mixtures. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicated that these mixtures were good with respect to durability and flexibility. The Resilient modulus result of NPMB demonstrates better resistance to rutting than those prepared using UMB mix. It was estimated that the average resilient modulus values for both UMB and NPMB mixtures are decreased by 80 percent when the test temperature increased from 25ºC to 40ºC.   In conclusion, the addition of NPA to the binder has certainly improved the bitumen properties significantly and hence increase the resistant to rutting of the asphalt mixture.


2013 ◽  
Vol 639-640 ◽  
pp. 1287-1294 ◽  
Author(s):  
Jing Song Chen ◽  
Lei Zeng ◽  
Jian Yin

Asphalt mixture compaction is an important procedure of asphalt mixture construction and can significantly affect the performance of asphalt pavement. In this paper, an open source DEM code was applied to simulate the compaction of hot-mix asphalt (HMA) with the Superpave gyratory compactor. The asphalt mixture compaction process, air voids distribution, internal coarse aggregate structure, and the effect of CA ratio were investigated from a microscopic point of view. The analysis results show that DEM simulation is an economical and effective approach to the research of asphalt mixture compaction, and has tremendous potential for asphalt mixture design.


2015 ◽  
Vol 752-753 ◽  
pp. 194-198 ◽  
Author(s):  
E. Shaffie ◽  
J. Ahmad ◽  
D. Kamarun

Rutting is a common pavement failure in road pavement. Rutting occurs mainly due to several factors including increasing of vehicles numbers, environmental conditions and also due to construction and design errors. As a consequence the service life of asphalt pavement is affected and will be decreased. Various researches reported that using different types of polymers in bitumen modification could be a solution to delay deterioration of asphalt pavement. The main purpose of the study was to investigate the effect of the NPA polymer modifier on the rutting behaviour of the asphalt mixtures through Superpave designed mixtures. . Two different types of dense graded Superpave HMA mix were developed consists of Control mix and nanopolyacrylate (NPA) mix. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore there is a significant difference between Control mix and NPA mix in terms of rutting in which rut depth after 8000 passes for Control mix was 5.94 mm while for NPA mix was 2.98 mm. The results of this investigation indicated that the Rutting test result of NPA demonstrates 3% better resistance to rutting than those prepared using Control mix. This is due to the addition of NPA to the bitumen has certainly improved the bitumen properties significantly and hence increase the resistant to rutting of the asphalt mixture. Therefore, it can be concluded that NPA polymer is feasible to be used as asphalt modifier and has potential for improvement in the field of pavement material and construction in future.


2014 ◽  
Vol 608-609 ◽  
pp. 1020-1024
Author(s):  
Jing Xu

The fiber is a reinforced material which has relatively light texture, high strength, is durable and wear-resistant, and widely used in the mixture of asphalt pavement. Adding different types of fibers in the construction, has a good effect in preventing cracks in the road, the performance of the road will also enhance. After the appropriate amount of fiber added to the asphalt mixture, fiber molecules will continuously and uniformly spread out, this time it will increase the anti-destructive of mixture, and will play an important role in protecting the road, preventing the road fracture. Related practices abroad show that adding fiber in asphalt mixture, every performance of the mixture will increase in different degrees. The diameter and density of different types of fibers will be different, of course, the reinforcing effect are not the same. This article describes application of a synthetic fibre in asphalt mixture, which is polyacrylonitrile fiber.


2013 ◽  
Vol 361-363 ◽  
pp. 1515-1518
Author(s):  
Li Jie Ma ◽  
Yu Liang Wang ◽  
Jin Yu Zhang

Coarse aggregate is the role of the formation for embedded crowded skeleton structure, and provided the appropriate size for filling the voids for fine aggregate. It is the key of excellent road performance of the asphalt mixture. The reasonable composition of coarse aggregate have researched with stage filling, to ensure the structure of multistage embedded skeleton crowded, and meet the actual road changing performance requirements.


2017 ◽  
Vol 23 (4) ◽  
pp. 627-648 ◽  
Author(s):  
Henrikas SIVILEVIČIUS ◽  
Kęstutis VISLAVIČIUS ◽  
Justas BRAŽIŪNAS

The asphalt pavement made of high quality materials and having the optimal composition best resists destructive effects of environmental factors and vehicles. The optimal content of the mineral materials of the asphalt mixture and a bituminous binder is selected employing calculation and experimental methods. The properties of the designed asphalt mixture must meet the requirements of technical specifications thus reducing its cost. The paper presents algorithms for simulating the composition of the asphalt mixture applying mathematical programming techniques. The algorithms allow designing the asphalt mixture with minimal bitumen content, a low cost of the mineral part and the densest gradation assessing technological requirements for producing the mixture. Optimal bitumen content is calculated considering bitumen capacities specified for different types of rock and determined employing the most recent standard sieves screening for narrow fractions. For verifying the new proposed algorithms, a numerical experiment on the materials most commonly used in asphalt mixing plants was done. The analysis of findings indicates that the application of the algorithms assist in comparing real results.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


Sign in / Sign up

Export Citation Format

Share Document