Study of Optical and Structure Properties for Different Composition Tin-Antimony-Selenium Thin Film

2011 ◽  
Vol 227 ◽  
pp. 43-48
Author(s):  
Farid M. Abdel-Rahim

Amorphous Se100-x (Sn Sb)x glasses with (0 ≤ x ≤ 20 at. %) were prepared by the usual melt quench technique. Thin films for these compositions were prepared by thermal evaporation onto ultrasonically cleaned glass substrates kept at room temperature. From the spectral dependence of the absorption coefficient, a direct electronic transition was mainly responsible for the photon absorption inside these films. The effects of composition on the optical properties of Se100-x(Sn Sb) x thin films was investigated. The refractive index, n, for the as-prepared and annealed films has been analyzed according to the Wwmple–DiDominico single oscillator model. The effect of addition (Sn Sb) on the nature and degree of crystallization has been investigated by studying the structure using transmission electron microscope, X-ray diffraction and scanning electron microscope.

2010 ◽  
Vol 305-306 ◽  
pp. 33-37 ◽  
Author(s):  
S. Lallouche ◽  
M.Y. Debili

This work deals with Al-Cu thin films, deposited onto glass substrates by RF (13.56MHz) magnetron sputtering, and annealed at 773K. The film thickness was approximately the same 3-4µm. They are characterized with respect to microstructure, grain size, microstrain, dislocation density and resistivity versus copper content. Al (Cu) deposits containing 1.8, 7.21, 86.17 and 92.5at%Cu have been investigated. The use of X-ray diffraction analysis and transmission electron microscopy lead to the characterization of different structural features of films deposited at room temperature (< 400K) and after annealing (773K). The resistivity of the films was measured using the four-point probe method. The microstrain profile obtained from XRD thanks to the Williamson-Hall method shows an increase with increasing copper content.


2011 ◽  
Vol 130-134 ◽  
pp. 994-997
Author(s):  
Jin Dong Wang ◽  
Fa Feng Xia

Nanocomposite Ni-Al2O3 thin film containing nanosized Al2O3 particles had been grown on steel substrate by ultrasonic-electrodeposited technology. The optimum technological parameters of nanocomposite Ni-Al2O3 thin films were obtained by experiments and analysis. X-ray diffraction analysis was utilized to detect the crystalline and amorphous characteristics of Ni-Al2O3 thin films. The surface morphology and metallurgical structure were analysed by high resolution transmission electron microscope, and scanning electron microscope. The test results showed that nanocomposite Ni-Al2O3 thin films prepared by proper ultrasonic-electrodeposited method consist of nanometer-sized Al2O3 particles and nickel grains. And the Al2O3 nanoparticles and Ni grains diameters in thin films are about 40nm and 80nm, respectively.


2020 ◽  
Vol 117 (6) ◽  
pp. 622
Author(s):  
Saranyoo Chaiwichian ◽  
Sumneang Lunput

In this research, TiO2 nanoparticle thin films were successfully prepared on FTO glass substrates through a doctor blade technique, and its application was tested in dye-sensitized solar cells (DSSCs) with different sensitizing dyes such as methylene blue (MB) and methyl orange (MO). The physicochemical properties of intended thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and UV-vis diffuse reflectance spectra (UV-vis DRS) techniques. The experimental results revealed that dipped TiO2 nanoparticle thin films into MB dye solution showed a higher photovoltaic efficiency (1.45%) when compared with the MO dye solution. A reasonable mechanism of DSSCs was also proposed.


2012 ◽  
Vol 710 ◽  
pp. 762-767
Author(s):  
Pawan Kumar ◽  
Sunil Kumar Khah ◽  
Subhash Chander Katyal ◽  
Rajesh Kumar

Magnetic thin films in nanometer range have been synthesized on the glass substrates. The synthesis has been carried out using Fe2+ and Fe3+ ions in a PVA solution in H2O. A different approach has been used for the synthesis of the magnetic thin films by using NH3vapors. Obtained films have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetic property measurement system (MPMS). The size and distribution of the magnetite nanoparticles inside the films depends upon the supply of the NH3 vapor. For large exposure time of NH3 vapors, film contains magnetite nanoparticles of size up to 80 nm. While for low exposure time of NH3 vapors, small magnetite nanoparticles of size nearly 20 nm have been obtained. The particles are independent to each other with no aggregation and are uniformly distributed inside the film.


1998 ◽  
Vol 541 ◽  
Author(s):  
C. H. Lin ◽  
H. C. Kuo ◽  
G. E. Stillman ◽  
Haydn Chen

AbstractHighly (100) textured pseudo-cubic Pb(ScTa)1−xTixO3 (x=0-0.3) (PSTT) thin films were grown by metal-organic chemical vapor deposition (MOCVD) on LaNiO3 (LNO) electrode buffered Si substrates at 650 °C. The microstructure and chemical uniformity were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and nanoprobe X-ray energy dispersive spectroscopy (EDS). The temperature dependence of dielectric properties and P-E behavior were measured. A shift of Curie temperature of these PST-based thin films due to Ti addition was demonstrated, Furthermore, the pyroelectric properties of these thin films were estimated.


2020 ◽  
Vol 18 (47) ◽  
pp. 21-32
Author(s):  
Emad J. Mohammed ◽  
Ahmed K. Abbas ◽  
Kadhim A. Aadim

In this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties, the effect of changing the laser energy on them was studied, and it was found that they have direct allowed transitions in the range of (1.55 to 2.45) eV


2005 ◽  
Vol 886 ◽  
Author(s):  
Yufeng Hu ◽  
Eli Sutter ◽  
Weidong Si ◽  
Qiang Li

ABSTRACTWe present a comparative study of the microstructure of Ca3Co4O9 single crystals and c-axis oriented Ca3Co4O9 thin films grown on glass substrates. Though both crystals and films have similar values of Seekbeck coefficient and electric resistivity at room temperature, their microstructures are rather different. Extensive high resolution transmission electron microscopy (TEM) studies reveal that the films grown on glass substrates have abundant stacking faults, which is in contrast to the perfect crystalline structure found in the single crystal sample. The c-axis lattice constants derived from the x-ray diffraction (XRD) and TEM measurements for the single crystal sample and the thin film are virtually the same, suggesting that the thin film on the glass substrate was not strained.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2015 ◽  
Vol 9 (3) ◽  
pp. 2461-2469
Author(s):  
S. R. Gosavi ◽  
K. B. Chaudhari

CdS thin films were deposited on glass substrates by using successive ionic layer adsorption and reaction (SILAR) method at room temperature. The effect of SILAR growth cycles on structural, morphological, optical and electrical properties of the films has been studied.  The thickness of the deposited film is measured by employing weight difference method. The X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) studies showed that all the films exhibit polycrystalline nature and are covered well with glass substrates. The values of average crystallite size were found to be 53 nm, 58 nm, 63 nm and 71 nm corresponding to the thin films deposited with 30, 40, 50 and 60 SILAR growth cycles respectively. From the UV–VIS spectra of the deposited thin films, it was seen that both the absorption properties and energy bandgap of the films changes with increasing number of SILAR growth cycles. A decrease of electrical resistivity has been observed with increasing SILAR growth cycle. 


Sign in / Sign up

Export Citation Format

Share Document