Effect of Corrosive Medium on the Corrosion Resistance of FeCrMoCB Amorphous Alloy Coating

2011 ◽  
Vol 291-294 ◽  
pp. 65-71 ◽  
Author(s):  
Qing Jun Chen ◽  
Lin Li Hu ◽  
Xian Liang Zhou ◽  
Xiao Zhen Hua ◽  
Ying Jun Yang

The purpose of this study is to investigate the electrochemical properties of Fe44Cr16Mo16C18B6amorphous alloy coating fabricated using high velocity oxygen fuel (HVOF) technology in 2.0M HCl and NaOH solution at room temperature(25°C). Based on the potentiodynamic polarization curves and Electrochemical Impedance Spectroscopy(EIS) testing results of coating in aqueous solutions of HCl and NaOH, the corrosion resistance of Fe44Cr16Mo16C18B6amorphous alloy coating in HCl solution was superior to that in NaOH solution. The icorrwas 1.487×10-5A·cm-2in HClsolution and 1.107×10-4A·cm-2in NaOH solution, while the Rtreach to 5.789×104Ω·cm2and 9780Ω·cm2, respectively. On the other hand, these corrosion phenomenon could be better interpreted by R(Q(R(RQW)))(RL) and R(RL)(Q(R(CW))) equivalent circuit model, which were different from that of other Fe-based amorphous alloys in HCl and NaOH solution, respectively.

2011 ◽  
Vol 291-294 ◽  
pp. 18-23
Author(s):  
Qing Jun Chen ◽  
Lin Li Hu ◽  
Xian Liang Zhou ◽  
Xiao Zhen Hua

The corrosion behavior of Fe44Cr16Mo16C18B6amorphous alloy coating was studied by electrochemical polarization curves and electrochemical impedance spectroscopy (EIS) in different HCl concentration solution at room temperature. Experimental results show that the polarization curves of the coating present a wide passivation range under open circuit potential and icorrincrease from 1.049×10-5A/cm2to 1.487×10-5A/cm2with HCl solution from 0.5M to 2.0M. The EIS of coating are composed of high-frequency inductive loop and low-frequency capacitance arc, which is different from the EIS of other amorphous alloys, the Rt is up to 5789Ω·cm2in 2M HCl solution. The especial equivalent circuit model R(RL)(Q(R(QRW))) can better interpret the corrosion behavior of the amorphous alloy coating.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 724 ◽  
Author(s):  
Zhang ◽  
Hong ◽  
Lin ◽  
Zheng

The corrosion behavior of unsealed and sealed high-velocity oxygen-fuel (HVOF)-sprayed nanostructured WC-CoCr cermet coatings under different corrosive environments was investigated using scanning electron microscopy (SEM), open circuit potential (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Ultrasonic excitation sealing with aluminum phosphate was performed in an external ultrasonic bath with the frequency of 40 kHz at atmospheric pressure and room temperature. SEM micrographs revealed that the exposed area of the coating was effectively reduced by the coverage of aluminum phosphate sealant on the majority of pores. Electrochemical measurements demonstrated that the sealant with the help of ultrasonic energy could shift the corrosion potential to a more noble direction, reduce the corrosion current density, increase the resistance of charge transfer, and effectively improve the corrosion resistance of the coating in both 3.5 wt % NaCl and 1 mol·L−1 HCl solutions.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 795
Author(s):  
Jingjing Xiao ◽  
Jinku Yu ◽  
Fuyu Guo ◽  
Qi Qiao ◽  
Haibo Yang ◽  
...  

Herein, NiCrP amorphous alloy coatings were prepared on copper substrates by electrodeposition. The aim of this paper is to replace Cr6+ with Cr3+ to prepare NiCrP amorphous alloy coating, which can reduce environmental pollution. By studying the influence of pH, temperature (T), current density (DK), and CrCl3 concentration on the structure, surface morphology, composition, and corrosion resistance of the alloy coatings, the optimum bath formulation and process parameters were determined as follows: 25 g·L−1 NiSO4·6H2O, 100 g·L−1 CrCl3·6H2O, 20 g·L−1 NaH2PO2·H2O, 80 g·L−1 Na3C6H5O7·2H2O (sodium citrate), 40 g·L−1 H3BO3, 50 g·L−1 NH4Cl, 1 g·L−1 KF, 5 g·L−1 C7H5O3NS (saccharin), 0.05 g·L−1 C12H25SO4Na (sodium dodecyl sulfate), and 40 mL·L−1 HCOOH and T: 30 °C, DK: 15 A·dm−2, and pH: 3.5, respectively. NiCrP amorphous alloy coatings with high corrosion resistance were prepared under the abovementioned conditions. The crystal cells of the coating surface are uniform and fine. The corrosion resistance of the NiCrP amorphous alloy coatings was characterized by polarization curves, electrochemical impedance spectroscopy, and an immersion corrosion test and compared with that of the NiP amorphous alloy coating. The results show that Ni91.9P8.1 and Ni83.5Cr8.3P8.2 corrosion potential and corrosion current density are −0.68, −0.44 V, and 36, 7 μA·cm−2 in 3.5 wt.% NaCl, respectively. With Ni91.9P8.1 and Ni83.5Cr8.3P8.2, the maximum weight loss is 61.67 and 15.42 mg·dm−2 in a 1 mol·L−1 HCl, respectively. The corrosion resistance of the NiCrP amorphous alloy coatings in 3.5 wt.% NaCl and 1 mol·L−1 HCl solutions is better than that of the NiP alloy coating.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7818
Author(s):  
Chun-Ying Lee ◽  
Hung-Hua Sheu ◽  
Leu-Wen Tsay ◽  
Po-Sen Hsiao ◽  
Tzu-Jing Lin ◽  
...  

In this study, Fe40Cr19Mo18C15B8 amorphous coatings were prepared using high velocity oxygen fuel (HVOF) technology. Different temperatures were used in the heat treatment (600 °C, 650 °C, and 700 °C) and the annealed coatings were analyzed by DSC, SEM, TEM, and XRD. XRD and DSC results showed that the coating started to form a crystalline structure after annealing at 650 °C. From the SEM observation, it can be found that when the annealing temperature of the Fe-based amorphous alloy coating reached 700 °C, the surface morphology of the coating became relatively flat. TEM observation showed that when the annealing temperature of the Fe-based amorphous alloy coating was 700 °C, crystal grains in the coating recrystallized with a grain size of 5–20 nm. SAED analysis showed that the precipitated carbide phase was M23C6 phase with different crystal orientations (M = Fe, Cr, Mo). Finally, the corrosion polarization curve showed that the corrosion current density of the coating after annealing only increased by 9.13 μA/cm2, which indicated that the coating after annealing treatment still had excellent corrosion resistance. It also proved that the Fe-based amorphous alloy coating can be used in high-temperature environments. XPS analysis showed that after annealing FeO and Fe2O3 oxide components increased, and the formation of a large number of crystals in the coating resulted in a decrease in corrosion resistance.


2019 ◽  
Vol 31 (4) ◽  
pp. 891-895
Author(s):  
Dinesh Kumar Chelike ◽  
K. Juliet Gnana Sundari

Considering the good corrosion resistance of Zn-Ni alloy, it is selected in the present study to be the protective coating on mild steel and it is considered as a strong candidate for the replacement of environmentally hazardous cadmium. Zn-Ni alloy coating is applied by electrodeposition at optimum temperature, current density and time. The bath solution used is consisting of EDTA as complexing agent. The electrodeposition is also carried out with tartaric acid and benzaldehyde additives to have good corrosion resistance and brightness. The electrodeposits obtained with and without additives are examined for nature and alloy composition. The corrosion behaviour of the electrodeposits is studied by Tafel polarization and electrochemical impedance spectroscopy.


2020 ◽  
Vol 1012 ◽  
pp. 401-406
Author(s):  
Carlos Trivellato de Carvalho Filho ◽  
Pedro Paiva Brito

In the present work, the friction surfacing process was applied to manufacture aluminum alloy (AA6351) coatings on low carbon steel (AISI 1020) substrates. After friction surfacing the AA6351 deposited coatings were submitted to two finishing process in order to adjust surface roughness: milling and milling followed by sanding. The corrosion behavior of the two finishing process was compared with the as-deposited condition in order to determine the influence of surface roughness on the corrosion resistance of friction surfacing coatings. The corrosion behavior was examined by electrochemical impedance spectroscopy and potentiodynamic polarization in a 3.5wt.%NaCl solution containing naturally dissolved O2. The results obtained indicated that the elevated surface roughness observed in the as-deposited condition led to relatively lower corrosion resistance in comparison, with lower values for polarization resistance and more anodic corrosion potential.


2018 ◽  
Vol 9 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Ramesh Bhat ◽  
Ampar Chitharanjan Hegde

Chloride bath containing ZnCl2 ∙7H2O, FeCl2 ∙H2O and a combination of sulphamic acid and citric acid (SA+CA) were optimized for electrodeposition of bright Zn-Fe alloy coating on the mild steel. Bath constituents and operating parameters were optimized by the Hull cell method for highest performance of the coating against corrosion. The effect of current density and temperature on deposit characteristics such as corrosion resistance, hardness, thickness, cathode current efficiency and glossiness, were studied. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) methods were used to assess corrosion behaviour. Surface morphology of coatings was examined using scanning electron microscopy (SEM). The Zn-Fe alloy with intense peaks corresponding to Zn (100) and Zn (101) phases, evidenced by X-ray diffraction (XRD) study, showed the highest corrosion resistance. A new and economical chloride bath for electrodeposition of bright Zn-Fe alloy coating on mild steel was proposed and discussed.


2015 ◽  
Vol 228 ◽  
pp. 213-218
Author(s):  
B. Łosiewicz ◽  
Magdalena Popczyk

The object of this work were composite electrocoatings with an amorphous Ni-P matrix containing crystalline NiO or Ni (OH)2component. The Ni-P+NiO, Ni-P+Ni (OH)2and Ni-P electrocoatings were deposited on a Cu substrate under galvanostatic conditions at room temperature. The electrocatalysts were characterized in the process of hydrogen evolution in 5 M NaOH solution in dependence on their deposition conditions, phase composition and chemical constitution. Based on the potentiodynamic polarization curves, the parameters of the Tafel equation and exchange current densities, were determined as a criterion for estimation of catalytic properties of these electrode materials towards hydrogen evolution reaction in an alkaline medium.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
J. Porcayo-Calderón ◽  
O. Sotelo-Mazón ◽  
M. Casales-Diaz ◽  
J. A. Ascencio-Gutierrez ◽  
V. M. Salinas-Bravo ◽  
...  

Corrosion behavior of Ni20Cr coatings deposited by HVOF (high velocity oxygen-fuel) process was evaluated in ZnCl2-KCl (1 : 1 mole ratio) molten salts. Electrochemical techniques employed were potentiodynamic polarization curves, open circuit potential, and linear polarization resistance (LPR) measurements. Experimental conditions included static air and temperatures of 350, 400, and 450°C. 304-type SS was evaluated in the same conditions as the Ni20Cr coatings and it was used as a reference material to assess the coatings corrosion resistance. Coatings were evaluated as-deposited and with a grinded surface finished condition. Results showed that Ni20Cr coatings have a better corrosion performance than 304-type SS. Analysis showed that Ni content of the coatings improved its corrosion resistance, and the low corrosion resistance of 304 stainless steel was attributed to the low stability of Fe and Cr and their oxides in the corrosive media used.


2012 ◽  
Vol 476-478 ◽  
pp. 397-401 ◽  
Author(s):  
Dong Yang ◽  
Xin Xin Lin ◽  
Huan Ming Chen ◽  
Ya Hong Gao ◽  
Qiong Lv ◽  
...  

The Ni-P-W/Al2O3composite coatings were deposited on the surface of sintered NdFeB permanent magnet by electroless plating method. The morphology and the phases of Ni-P-W/Al2O3composite coatings were investigated using scanning electron microscopy and X-ray diffraction respectively. The hardness and the corrosion resistance of the composite coatings were also tested. The results indicated that the composite coatings morphology appears closely nodules morphology, and the microhardness increases linearly with increasing incorporation of Al2O3ratio. Compared with NdFeB magnet and Ni-P-W amorphous alloy coating, the corrosion resistance of the composite coatings was superior to that of the NdFeB magnet and the amorphous alloy coating obviously. However, for the corrosion resistance of Ni-P-W/Al2O3composite coatings with different Al2O3concentration, there is not a linear increase with the Al2O3concentration increasing. The self-corrosion potential of Ni-P-W/Al2O3composite coatings reaches the highest value while increasing incorporation of Al2O3ratio up to 10 g/L.


Sign in / Sign up

Export Citation Format

Share Document