Synthesis and Photoluminescence of Cr-Doped Rod-Like ZnO Particles by Hydrothermal Method

2011 ◽  
Vol 306-307 ◽  
pp. 176-179 ◽  
Author(s):  
Lian Mao Hang ◽  
Zhi Yong Zhang ◽  
Jun Feng Yan

Cr-doped rod-like ZnO particles with nominal 3 at% doping concentration were synthesized by hydrothermal method. The structural and optical properties of the sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and photoluminescence (PL). The results show that the as-synthesized product is of hexagonal wurtzite structure without metallic Cr or other secondary phases and the morphology of the ZnO particles is rod shaped. The room-temperature PL spectrum of the Cr-doped rod-like ZnO particles exhibits a strong blue emission at 440nm and two weak emission bands centered at 410nm and 565nm, respectively.

2014 ◽  
Vol 934 ◽  
pp. 71-74
Author(s):  
Lian Mao Hang ◽  
Zhao Ji Zhang ◽  
Zhi Yong Zhang

Ni-doped rod-like ZnO particles with doping concentration of 1 at.% were synthesized at 200°C by hydrothermal method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and superconducting quantum interference device (SQUID). The results show that the as-synthesized samples are pure hexagonal wurtzite structure without metallic Ni or other secondary phases and display rod-like shape with smooth surface. The magnetization measurements reveal that the Ni-doped rod-like ZnO particles show ferromagnetic behavior at room temperature. The saturation magnetization and coercive field are 0.0046 emu/g and 15 Oe, respectively.


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


2013 ◽  
Vol 678 ◽  
pp. 131-135 ◽  
Author(s):  
D. Geethalakshmi ◽  
N. Muthukumarasamy ◽  
R. Balasundaraprabhu

Abstract. Cadmium Telluride (CdTe) films were thermally evaporated on to glass substrates at room temperature. By varying the amount of source material, thin films of thickness ranging from 90 nm – 635 nm have been prepared. Film of thickness 200 nm was annealed to 400°C for different durations of time and also subjected to alternate heating - cooling cycle. X-ray diffraction study was carried out to study the effect of film thickness, annealing duration and alternate heating-cooling cycle on the structural properties of the films. The transmittance spectra recorded using a UV-Vis-NIR spectrophotometer was used to study the change in optical properties of the films with respect to film thickness, annealing duration and alternate heating-cooling cycle.


2013 ◽  
Vol 27 (29) ◽  
pp. 1350211 ◽  
Author(s):  
ARBAB MOHAMMAD TOUFIQ ◽  
FENGPING WANG ◽  
QURAT-UL-AIN JAVED ◽  
QUANSHUI LI ◽  
YAN LI

In this paper, single crystalline tetragonal MnO 2 nanorods have been synthesized by a simple hydrothermal method using MnSO 4⋅ H 2 O and Na 2 S 2 O 8 as precursors. The crystalline phase, morphology, particle sizes and component of the as-prepared nanomaterial were characterized by employing X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDS). The photoluminescence (PL) emission spectrum of MnO 2 nanorods at room temperature exhibited a strong ultraviolet (UV) emission band at 380 nm, a prominent blue emission peak at 453 nm as well as a weak defect related green emission at 553 nm. Magnetization (M) as a function of applied magnetic field (H) curve showed that MnO 2 nanowires exhibited a superparamagnetic behavior at room temperature which shows the promise of synthesized MnO 2 nanorods for applications in ferrofluids and the contrast agents for magnetic resonance imaging. The magnetization versus temperature curve of the as-obtained MnO 2 nanorods shows that the Néel transition temperature is 94 K.


2014 ◽  
Vol 975 ◽  
pp. 243-247 ◽  
Author(s):  
Camila Soares Xavier ◽  
Ana Paula de Moura ◽  
Elson Longo ◽  
José Arana Varela ◽  
Maria Aparecida Zaghete

In this work, we report on the synthesis of MgMoO4 crystals by oxide mixed method. The powder was calcined at 1100 °C for 4h and analyzed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Field emission gun scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and Photoluminescence (PL) measurement. XRD analyses revealed that the MgMoO4 powders crystallize in a monoclinic structure and are free secondary phases. UVvis technique was employed to determine the optical band gap of this material. MgMoO4 crystals exhibit an intense PL emission at room temperature with maximum peak at 579 nm (yellow region) when excited by 350 nm wavelength at room temperature.


2013 ◽  
Vol 378 ◽  
pp. 198-201
Author(s):  
Seung Rok Lee ◽  
Si Nae Heo ◽  
M.S. Anwar ◽  
Ahmed Faheem ◽  
Bon Heun Koo

In this research, ZnO nanorods were fabricated on the polymer substrate using a hydrothermal process. The grown nanorods were characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Raman measurements. ZnO nanorod arrays have been fabricated with diameter of 30-50 nm, and highly c-axis oriented with hexagonal wurtzite structure and perpendicular to the substrate with high crystalline quality. Room temperature Raman measurements exhibit high intensity E2 high mode and low intensity defect related mode.


2015 ◽  
Vol 47 (2) ◽  
pp. 187-194 ◽  
Author(s):  
M. Novakovic ◽  
M. Popovic ◽  
N. Bibic

The present study deals with CrN films irradiated at room temperature (RT) with 200 keV Ar+ ions. The CrN layers were deposited by d.c. reactive sputtering on Si (100) wafers, at nitrogen partial pressure of 5?10-4 mbar, to a total thickness of 280 nm. The substrates were held at 150?C during deposition. After deposition the CrN layers were irradiated with 200 keV Ar+ ions to the fluences of 5?1015 - 2?1016 ions/cm2. Structural characterization was performed with Rutherford backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (XTEM) and X-ray diffraction (XRD). Spectroscopic ellipsometry measurements were carried out in order to study optical properties of the samples. The irradiations caused the microstructrual changes in CrN layers, but no amorphization even at the highest argon fluence of 2?1016 ions/cm2. Observed changes in microstructure were correlated with the variation in optical parameters. It was found that both refractive index and extinction coefficient are strongly dependent on the defect concentration in CrN layers.


2020 ◽  
Vol 26 (2) ◽  
pp. 1-20
Author(s):  
SC Mazumdar ◽  
AT Trina ◽  
F Alam ◽  
MJ Miah ◽  
MNI Khan

Spinel type polycrystalline Ni0.6-xZn0.4SrxFe2O4 (x = 0.0, 0.05, 0.10, 0.15 and 0.20) ferrites are synthesized by solid state reaction method. X-ray diffraction (XRD) pattern reveals the formation of spinel structure with two secondary phases Sr2FeO4 and SrFe12O19 for higher concentration of Sr (0.15 and 0.20). An increase in lattice constant is observed with the increase of Sr content in the lattice. The density of the samples is found to decrease whereas porosity increases with the substitution of Sr2+ ions. Microstructural investigation shows that the grain size increases with the increase of Sr content. Magnetic hysteresis is investigated at room temperature. All the samples exhibit lower coercivity values indicating that the materials belong to the class of soft ferrites. The saturation magnetization is found to decrease with Sr content which is attributed to Néel’s two sub-lattice model of ferrites. The real permeability of the samples remains almost constant up to a certain frequency and then falls rapidly. Improved dielectric constant is observed in the Sr2+ substituted samples. The electrical conduction in these ferrites is explained on the basis of hopping mechanism between the Fe2+ and Fe3+ ions. Bangladesh Journal of Physics, 26(2), 1-20, December 2019


2013 ◽  
Vol 678 ◽  
pp. 91-96
Author(s):  
Krishnan Sambath ◽  
Manickam Saroja ◽  
Muthusamy Venkatachalam ◽  
Krishnan Rajendran ◽  
Kumaravelu Jagatheeswaran

Flower-like ZnO nanostructures have been synthesized using zinc nitrate hexahydrate and hexamethylenetetramine (HMT) by a low-temperature hydrothermal technique. The prepared ZnO nanostructures exhibit hexagonal wurtzite structure, well-defined flower-like morphology, and a strong blue emission photoluminescence. Flower-like ZnO nanostructures consisting of multilayered petals are formed with the length of about 1 μm. All the flower petals exhibit the tapering feature with the root size of 300-500 nm and tip size of 50-100 nm. The prepared ZnO sample has been studied using x-ray diffraction technique, energy dispersive x-ray analysis, scanning electron microscope and FTIR spectroscopy. The photoluminescence spectrum demonstrated two emission bands, a near band edge (NBE) emission in the UV region centering at 386 nm and a high intensity deep band emission (DBE) in the visible region centering at 483 nm.


2016 ◽  
Vol 34 (3) ◽  
pp. 529-533 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Budsabong Kuntalue ◽  
Surachai Artkla ◽  
Surin Promnopas ◽  
Wonchai Promnopas ◽  
...  

AbstractPbMoO4 and PbWO4 were successfully synthesized by microwave radiation using different lead salts (acetate, chloride, nitrate and sulfate) and Na2MO4 (M = Mo, W) in propylene glycol. The products were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM, TEM), Fourier transform infrared (FT-IR), Raman spectroscopy and photoluminescence (PL) spectroscopy. In this research, morphologies, crystallization and photoluminescence of the products were influenced by the kinetics of anions, including the detection of M–O (M = Mo, W) stretching modes in the (MO4)2− tetrahedrons. Photoluminescence of PbMoO4 synthesized from Pb(NO3)2 and of PbWO4 synthesized from PbCl2 showed the strongest blue emission due to the electronic diffusion in tetrahedrons at room temperature.


Sign in / Sign up

Export Citation Format

Share Document