Study on CO2 Sequestration Property of Cement Based Composite Cementitious Materials Containing Steel Slag Used in Road

2011 ◽  
Vol 311-313 ◽  
pp. 1949-1952 ◽  
Author(s):  
Ying Li Gao ◽  
Ling Cheng

Cement based composite cementitious material containing steel slag used in road has been prepared to deal with the current situation that the transportation carbon emission increased year by year. In this material, 40% cement has been replaced by equivalent steel slag, which has the ability of CO2sequestration. This paper studied the CO2sequestration effect and the mechanical properties of the pure cement, the pure steel slag, and the cement based composite cementitious materials containing steel slag. It has been shown that the cement based composite cementitious materials containing steel slag have excellent CO2sequestration property. The mass fraction growth rate of carbon reached 10.86% after 1 hour carbonation experiment, the value between which of pure cement and pure steel slag, and the compressive strength of the composite cementitious materials at 28-day age can reach 45.3MPa, meeting the requirements of road.

2014 ◽  
Vol 878 ◽  
pp. 171-176 ◽  
Author(s):  
Xu Quan Huang ◽  
Hao Bo Hou ◽  
Min Zhou ◽  
Wei Xin Wang

With new type steel slag-blast furnace slag-fluorgypsum-based cemented material, P O42.5 cement, commonly used cementation agent in China, mechanical properties and microstructure of tailings solidification bodies are studied. The hydration products and morphology tailings concretion body in 60 days are analyzed by SEM and XRD test, which reveals the tailings cementation mechanism solidifying with different cementitious material. Furthermore, a large number of slender bar-like ettringite crystals and filamentous network-like calcium-silicate-hydrate gels bond firmly each other, which is the most important reason why steel slag-blast furnace slag-fluorgypsum base cemented material has the best tailings cementation mechanical properties.


2021 ◽  
Vol 879 ◽  
pp. 81-90
Author(s):  
Xiao Feng Li ◽  
Shu Ing Doh ◽  
Wei Ying Feng ◽  
Ja’far A. Aldiabat Albtoosh ◽  
Beng Wei Chong

Steel slag (SS) is a kind of industrial solid waste usually been dumped at landfills and causes environmental pollution. Previous studies have demostrated that SS can be an alternative material to be used for making concrete and could achieve good mechanical properties, which not only reduce natural resources depletion but also improve environmental quality. This study aims to evaluate the effectiveness of SS as supplementary cementitious material (SCM) partially replacing cement on workability and mechanical properties of fresh and hardened concrete. X-ray flouresence test, slump test, compressive strength test and ultra pulse velocity test have been conducted. Mix designs are determined with replacement proportion of cement by SS of 0, 10%, 20%, 30%, 40% and 50%. Results show that replacement of cement by SS up to 50% increase the workability of concrete. The density of concrete ranges from 2083 to 2373 kg/m3, with and without replacement of SS at curing age of 1-day, 3-day and 28-day. Compressive strength of concretes incorporating SS is lower than that of plain concrete. 1-day and 3-day compressive strength of concrete incorporating SS decrease with the increase in replacement of SS while 28-day compressive strength reach peak at 30% replacement and further replacement of SS reduce 28-day compressive strength. The UPV value of concrete have good relationship with compressive strengh with the correlation coefficient of 0.92, 0.87 and 0.70 of 1-day, 3-day and 28-day experiment data, respectively. This study indicates the SS can be used for making concrete.


2021 ◽  
Vol 290 ◽  
pp. 01011
Author(s):  
Dan Cheng ◽  
Jianxun Ma ◽  
Yilei Zhang ◽  
Xuhui Chen ◽  
Wenxiao Li

Magnesium slag is a kind of solid waste discharged by magnesium alloy related industries in the process of producing magnesium products or their alloys. Its composition is similar to Portland cement clinker, so it has great potential to be used as a new cementing material. In this paper, magnesium slag cementitious material specimens with different fineness were made by imitating the actual production environment. The flexural strength and compressive strength of specimens with different curing ages were tested, and the influence of fineness on them was analyzed. The results show that the fineness has a significant effect on the mechanical properties of pure magnesium slag cementitious materials. Its effect on the early strength is greater than that on the later strength. But the flexural strength and compressive strength will not always increase with the increase of fineness. There is a reasonable range of fineness.


MRS Advances ◽  
2019 ◽  
Vol 4 (54) ◽  
pp. 2939-2949 ◽  
Author(s):  
Ismael Justo-Reinoso ◽  
Mark T. Hernandez

ABSTRACTA new generation of cementitious materials is being engineered to selectively inhibit the growth of Acidithiobacillus, which are a key genera of acid-generating bacteria responsible for microbially induced concrete corrosion (MICC). In this context, the substitution of metal-laden granular activated carbon (GAC) particles and/or steel slag for a fraction of the fine aggregates traditionally used in concrete mixture has proven useful. While the antimicrobial properties of specific heavy metals (i.e. copper and cobalt) have been leveraged to inhibit acid-generating bacteria growth on sewer pipes, few studies have researched how biocidal aggregates may affect the microstructural and mechanical properties of cementitious materials. We report here on the effects that these biocidal aggregates substitutions can have on compressive strength, flowability, and setting times of cement-based formulations. Results showed that increases in compressive strength, regardless of the presence or absence of biocidal metals, resulted from the GAC incorporation where sand replacement was 3% by mass or lower, while flowability decreased when percentages higher than 3% of GAC was incorporated in a cement mix. When substituting fine aggregate with steel slag particles in mass ratios between 5% and 40%, compressive strength was not affected, regardless of the presence or absence of copper. Setting times were not affected by the inclusion of GAC or steel slag particles except when substituting GAC particles at 10% of the fine aggregate mass; under this condition both initial and final setting times were decreased. Results suggest that in order to have enhanced inhibition potential against acidophilic microorganisms and equal or improved mechanical properties, a combination of 1% metal-laden GAC and 40% copper-laden steel slag is an optimum fine aggregate substitution scenario.


2011 ◽  
Vol 105-107 ◽  
pp. 2204-2208 ◽  
Author(s):  
Run Xia Hao ◽  
Xiao Yan Guo

The properties of flue gas desulphurization (FGD) gypsum were analysized by Thermo-gravimetry/differential scanning calorimetry (TG/DSC), technical performance analysis, optical microscope and Scanning electron microscope (SEM). Mechanical properties of FGD gypsum-steel slag powder cementitious material were researched. The results revealed that FGD gypsum have similar moisture content, major component CaSO4·2H2O with natural gypsum, and has better technical performance than natural gypsum. The results of optical microscope and SEM of the FGD gypsum hydration support this further. When the dosage of steel slag powder is 15%, containing activator ,better mechanical properties can be obtained. Key words: FGD gypsum, Property, Cementitious material


2019 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
N. SCHWANTES-CEZARIO ◽  
M. F. PORTO ◽  
G. F. B. SANDOVAL ◽  
G. F. N. NOGUEIRA ◽  
A. F. COUTO ◽  
...  

Abstract This study aims to evaluate the influence of B. subtilis AP91 spores addition on the mechanical properties of mortars. B. subtilis strain AP91, isolated from rice leaves of the needle variety, which has an early cycle of production, was used at the concentration of 105 spores/mL in mortars with cement-to-sand ratio of 1:3 (by weight) and water-to-cement ratio (w/c) of 0.63. These spores were added in two different ways: in the mixing water and by immersion in a solution containing bacterial spores. Scanning Electron Microscope (SEM) analysis showed crystals with calcium peaks on the EDS, which possibly indicates the presence of bioprecipitated calcium carbonate. The results obtained in the mechanical analysis showed that the bioprecipitation of CaCO3 by B. subtilis strain AP91 was satisfactory, particularly when the spores were added in the mixing water, increasing the compressive strength up to 31%. Thus, it was concluded that the addition of B. subtilis AP91 spores in the mixing water of cement mortars induced biocementation, which increased the compressive strength. This bioprecipitation of calcium carbonate may very well have other advantageous consequences, such as the closure of pores and cracks in cementitious materials that could improve durability properties, although more research is still needed on this matter.


2020 ◽  
Vol 833 ◽  
pp. 228-232
Author(s):  
Md. Jihad Miah ◽  
Mohammad Shamim Miah ◽  
Anisa Sultana ◽  
Taukir Ahmed Shamim ◽  
Md Ashraful Alom

This work performs experimental investigations on concrete made with difference replacement percentage of first-class burnt clay brick aggregate (0, 10, 20, 30, 40, 50, 60, 80, and 100%) by steel slag (SS) aggregate. The aim is to evaluate the mechanical properties as well as durability performances, additionally, water absorption porosity test is performed to investigate the influence of steel slag aggregate on the durability of tested concrete. The experimental results have shown that the compressive strength was improved significantly due to the replacement of brick aggregate by steel slag aggregate. The crushing strength of concrete made with 100% steel slag aggregate has gained up to 70% more than the control concrete (100% brick aggregate). However, the porosity of concrete was reduced with the adding percentage of brick aggregate by steel slag aggregate which is consistent with the compressive strength results. Further, a quite good agreement between compressive strength and porosity was observed as well.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


2013 ◽  
Vol 634-638 ◽  
pp. 311-316
Author(s):  
Ping Yang ◽  
Zhi Gui Qin ◽  
Wei Xia Zhao ◽  
Xi Nan Cai ◽  
Xiao Lin Yuang

The research adopts the raw material of 89% slag with the composite activators and the compressive strength, hydration heat, temperature and expansion property of the material are studied. And the new cementitious material is obtained with the properties of low-heat and small expansion, convenience-confect, easy-operation and need no mass production. This material has the remarkable economic profit and good application foreground especially in the mass grouting engineering.


Recycling of materials has become a major interest for engineers. At present, the amount of slag deposited in storage yard adds up to millions of tons/year leading to the occupation of farm land and serious pollution to the environment, as a result of the rapid growth in the steel industry. Steel slag is made at 1500- 1650°C having a honey comp shape with high porosity. Using steel slag as the natural aggregate with a lower waste material cost can be considered as a good alternative for sustainable constructions. The objective of this study is to evaluate the performance of residual mechanical properties of concrete with steel slag as coarse aggregate partial replacement after exposing to high temperatures .This study investigates the behavior of using granulated slag as partial or fully coarse aggregate replacement with different percentages of 0%, 15%, 30%, 50% and 100% in concrete when subjected to elevated temperatures. Six groups of concrete mixes were prepared using various replacement percentages of slag exposed to different temperatures of 400 °C, 600 °C and 800 °C for different durations of 1hr, 1.5hr and 2hr. Evaluation tests were compressive strength, tensile strength, and bond strength. The steel slag concrete mixes showed week workability lower than control mix. A systematic increasing of almost up to 21.7% in compressive strength, and 66.2% in tensile strength with increasing the percentage of steel slag replacement to 50%. And the results showed improvement on concrete residual mechanical properties after subjected to elevated temperatures with the increase of steel slag content. The findings of this study give an overview of the effect of steel slag coarse aggregate replacement on concrete after exposed to high temperatures.


Sign in / Sign up

Export Citation Format

Share Document