Preparation of Slag Reactive Powder Concrete and the Research on its Resistance to Chloride Ion Permeability

2011 ◽  
Vol 391-392 ◽  
pp. 1189-1194 ◽  
Author(s):  
Tao Shi ◽  
Su Wei ◽  
Jia Yan Shen ◽  
Qing Ye

Basing on the basic preparation principle of reactive powder concrete, through mixing the new active component of slag, this thesis aims to confect new-type cement-based material with super high performance. As illustrated from the experiments of resistance to chlorine ion permeability, this type of concrete is with extremely compact structure and higher resistance to chlorine ion permeability compared with other cement-based materials. Silica fume presents the most important promotion effect on its resistance to chlorine ion permeability. Steel fiber and standard sand also help to enhance its impermeability. Through the analysis and the research on microstructure realized by X-ray Diffraction, mercury penetration experiment and SEM, all these views have been proved.

Author(s):  
A.S. Benosman ◽  
M. Mouli ◽  
H. Taïbi ◽  
M. Belbachir ◽  
Y. Senhadji

This paper describes an innovative use of plastic bottle waste as cement-substitution within composite materials for preventing chemical attacks or repairing various reinforced concrete structures. Various weight fractions of cement varying from 2.5% to 7.5% were substituted by the same weight of polyethylene terephthalate (PET). The specimens were tested in flexure and compressive strength and for chemical resistance to acid, basic solutions at 5% and for chloride ion permeability. From this study, it was found that the PET-modified mortars exposed to aggressive environments showed better resistance to chemical attack and higher resistance to chloride ion penetration than unmodified one without substantially affecting the mechanical strength in tap water. The addition of PET to the modified mortars, means reducing the penetration of aggressive agents. So, the mass loss of composites exposed to hydrochloric and acetic acid solutions is lower than those of unmodified mortar. The basic solutions are harmless for composite materials. The formations which appear such as different calcium salts were determined by X-ray diffraction and FT-IR.


Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xinzhao Xia ◽  
Lixian Xia ◽  
Geng Zhang ◽  
Yuxuan Jiang ◽  
Fugang Sun ◽  
...  

Abstract In this work, a new type of zinc(II) coordination polymer {[Zn(HIDC)(BBM)0.5]·H2O} n (Zn-CP) was synthesized using 4,5-imidazoledicarboxylic acid (H3IDC) and 2,2-(1,4-butanediyl)bis-1,3-benzimidazole (BBM) under hydrothermal conditions. Its structure has been characterized by infrared spectroscopy, elemental analysis and single crystal X-ray diffraction analysis. The Zn(II) ion is linked by the HIDC2− ligand to form a zigzag chain by chelating and bridging, and then linked by BBM to form a layered network structure. Adjacent layers are further connected by hydrogen bond interaction to form a 3-D supramolecular framework. The solid-state fluorescence performance of Zn-CP shows that compared with free H3IDC ligand, its fluorescence intensity is significantly enhanced.


2012 ◽  
Vol 490-495 ◽  
pp. 3486-3490
Author(s):  
Qiang Yu ◽  
Zhen Chen ◽  
Zhong Cheng Guo

In order to prepare a new type of anode material, stainless steel was selected as substrate material. The β-PbO2 coating on stainless steel substrate was prepared under the appropriate plating solution, and the PbO2-MnO2 coating was prepared with thermal decomposition. The crystal structure was determined by X-ray diffraction; Surface morphology was test by Scanning Electron Microscopy; the energy spectrum was used to determine element mass-fraction and the ratio of atomic number of the coatings.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


2013 ◽  
Vol 368-370 ◽  
pp. 1112-1117
Author(s):  
Jin Hui Li ◽  
Liu Qing Tu ◽  
Ke Xin Liu ◽  
Yun Pang Jiao ◽  
Ming Qing Qin

In order to solve the environment pollution of limestone powder during production of limestone manufactured sand and gravel and problem of lack of high quality fly ash or slag powder in ocean engineering, ultra-fine limestone powder was selected for preparation of green high-performance marine concrete containing fly ash and limestone powder and that containing slag powder and limestone powder for tests on workability, mechanical performance, thermal performance, shrinkage, and resistance to cracking and chloride ion permeability. And comparison was made between such green high-performance concrete and conventional marine concrete containing fly ash and slag powder. Moreover, the mechanism of green high-performance marine concrete was preliminary studied. Results showed that ultra-fine limestone powder with average particle size around 10μm had significant water reducing function and could improve early strength of concrete. C50 high-performance marine concrete prepared with 30% fly ash and 20% limestone powder or with 30% slag powder and 30% limestone powder required water less than 130kg/m3, and showed excellent workability with 28d compressive strength above 60MPa, 56d dry shrinkage rate below 300με, cracking resistance of grade V, 56d chloride ion diffusion coefficient not exceeding 2.5×10-12m2/s. Mechanical performance and resistance to chloride ion permeability of limestone powder marine concrete were quite equivalent to those of conventional marine concrete. But it had better workability, volume stability and cracking resistance. Moreover, it can serve as a solution to the lack of high quality fly ash and slag powder.


2021 ◽  
Vol 21 (11) ◽  
pp. 5592-5602
Author(s):  
Samira Almasi ◽  
Ali Mohammad Rashidi

The effect of the yttria-stabilized zirconia (YSZ) nanoparticle loading in an electro-less bath was considered as one of the vital synthesis variables for control Ni content and microstructure of prepared nanocomposite particles, which are two crucial factors to achieving high-performance SOFC anode. Nanocomposite particles were prepared using a simple electroless method without any expensive pretreatment of sensitizing by Sn2+ ions as well as activating by Pd2+ ions that are usually used to apply nickel coating on the surface of a non-conductive substrate. The process was performed by adding YSZ nanoparticles into NaOH solution, separating them from the solution by the centrifugal method, then providing several water-based nanofluids with different concentrations of activated YSZ nanoparticles, mixing them with NiCI2 solution, followed by adding the hydrazine and then NaOH solution. X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis were used to analyze the prepared nanocomposite particles. It is observed that after adding YSZ nanoparticles into the NaOH solution, the pH of the solution varied gradually from a starting pH of 10.2 to 9. Also, by increasing the YSZ nanoparticles loading in the electroless bath from 76 mg/l to 126 mg/l, the grain size of Ni deposits, the Ni content and the average size of the prepared nanocomposite particles decreased. The electrochemical mechanism previously proposed for the nickel ion reduction was modified, and a novel analytical model was proposed for variation of the efficiency of Ni deposition with YSZ nanoparticles loading.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5871
Author(s):  
Jinming Liu ◽  
Boyu Ju ◽  
Wei Xie ◽  
Huang Yu ◽  
Haiying Xiao ◽  
...  

In this paper, an ultrahigh-strength marine concrete containing coral aggregates is developed. Concrete fabricated from marine sources is considered an effective and economical alternative for marine engineering and the construction of remote islands. To protect sea coral ecosystems, the coral aggregates used for construction are only efflorescent coral debris. To achieve the expected mechanical performance from the studied concrete, an optimal mixture design is conducted to determine the optimal proportions of components, in order to optimize the compressive strength. The mechanical properties and the autogenous shrinkage, as well as the heat flow of early hydration reactions, are measured. The hydration products fill up the pores of coral aggregates, endowing our concrete with flowability and self-compacting ability. The phases in the marine concrete are identified via X-ray diffraction analysis. The 28-day compressive and flexural strength of the developed marine concrete achieve 116.76 MPa and 18.24 MPa, respectively. On account of the lower cement content and the internal curing provided by coral aggregates, the volume change resulting from autogenous shrinkage is only 63.11% of that of ordinary reactive powder concrete.


Sign in / Sign up

Export Citation Format

Share Document