Effect of High-Temperature Heat Treatment on Mechanical Property of Cr-Geopolymer Composite

2011 ◽  
Vol 399-401 ◽  
pp. 469-473
Author(s):  
Mei Rong Wang ◽  
Yi Zheng ◽  
De Chang Jia ◽  
Yu Zhou

Chromium powder reinforced geopolymer composite (Cr/geopolymer) was prepared in order to enhance its thermal conductivity and mechanical properties. The phase composition, microstructure and mechanical properties of Cr/geopolymer before and after heat treatment at 900, 1000, 1100 and 1200°C were investigated by the X–ray diffraction (XRD), scanning electron microscopy (SEM) and three–point bending test. With increasing heat treatment temperature from 900 to 1100°C, mechanical property of Cr/geopolymer increased gradually and at 1100°C flexural strength got the peak value, which was 325% higher than that of specimens without heat treatment. Cr/geopolymer treated at 900°C did not completely transform into crystalline phase, and many micro cracks around the chromium particles were observed. Cr/geopolymer treated at 1000–1100°C completely crystallized into leucite phase, and the metal chromium remained its original state. Meanwhile, most of the micro cracks were closed. When the temperature further increased to 1200°C, many visible defects were observed in Cr/geopolymer, and chromium oxide appeared in the interface of Cr/geopolymer, which had detrimental effect on the heat conduction and mechanical property of the composite.

2006 ◽  
Vol 317-318 ◽  
pp. 323-326 ◽  
Author(s):  
D.J. Park ◽  
S.H. Kim ◽  
J.H. Lee ◽  
Seong Hee Lee ◽  
Yong Ho Choa

Anodic aluminum oxide (AAO) was prepared in three types of aqueous solutions with various applied voltage. The mechanical property of AAO prepared in different electrolyte was investigated and hardness was increased on account of the increase of the thickness between pores. The mechanical property and microstructure change of AAO prepared in oxalic acid at 40V was investigated by heat treatment. AAO prepared in oxalic acid at 40V was transformed from amorphous to crystalline phase by heat treatment above 800oC and hardness was increased about 2.6 times with increase of heat treatment temperature.


Author(s):  
Amit Kumar

In this work we have analyzed the effect heat treatment on properties of spring shape steel specimens under various heat treatment processes. Specimen was subjected to heat treatment in electric muffle furnace. Heat treatment temperature, soaking time and cooling rate were selected as per phase diagram of specimen material. Specimen was tested for mechanical properties before and after heat treatment. Two processes annealing and normalizing compared with respect to their effect on properties of spring shape specimens in reference with standard data for steel used.


2008 ◽  
Vol 55-57 ◽  
pp. 245-248 ◽  
Author(s):  
Nattiree Chiranavanit ◽  
Anak Khantachawana ◽  
N. Anuwongnukroh ◽  
Surachai Dechkunakorn

Ni-Ti alloy wires have been widely used in clinical orthodontics because of their properties of superelasticity (SE) and shape memory effect (SME). The purpose of this study was to assess the mechanical properties and phase transformation of 50.7Ni-49.3 Ti (at%) alloy (NT) and 45.2Ni-49.8Ti-5.0Cu (at%) alloy (NTC), cold-rolled with various percent reductions. To investigate SE and SME, heat-treatment was performed at 400°C and 600°C for 1 h. The specimens were examined using an Energy-Dispersive X-ray Spectroscope (EDS), Differential Scanning Calorimeter (DSC), Universal Testing Machine (Instron), Vickers Hardness Tester and Optical Microscope (OM). On the three-point bending test, the superelastic load-deflection curve was seen in NTC heat-treated at 400°C. Furthermore, NT heat-treated at 400°C with 30% reduction produced a partial superelastic curve. For SME, no conditions revealed superelasticity at the oral temperature. Micro-hardness value increased with greater percentage reduction. The average grain size for all specimens was typically 55-80 µm. The results showed that locally-made Ni-Ti alloys have various transformation behaviors and mechanical properties depending on three principal factors: chemical composition, work-hardening (the percent reduction) and heat-treatment temperature.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1239
Author(s):  
Ali Chalgham ◽  
Andrea Ehrmann ◽  
Inge Wickenkamp

Fused deposition modeling (FDM) is one of the most often-used technologies in additive manufacturing. Several materials are used with this technology, such as poly(lactic acid) (PLA), which is most commonly applied. The mechanical properties of 3D-printed parts depend on the process parameters. This is why, in this study, three-point bending tests were carried out to characterize the influence of build orientation, layer thickness, printing temperature and printing speed on the mechanical properties of PLA samples. Not only the process parameters may affect the mechanical properties, but heat after-treatment also has an influence on them. For this reason, additional samples were printed with optimal process parameters and characterized after pure heat treatment as well as after deformation at a temperature above the glass transition temperature, cooling with applied deformation, and subsequent recovery under heat treatment. These findings are planned to be used in a future study on finger orthoses that could either be printed according to shape or in a flat shape and afterwards heated and bent around the finger.


2008 ◽  
Vol 55-57 ◽  
pp. 249-252 ◽  
Author(s):  
W. Kiattiwongse ◽  
Anak Khantachawana ◽  
P. Santiwong

Two types of rectangular orthodontic archwires; NiTiTM and 40oCuNiTi, were heat treated by Direct Electric Resistance Heat Treatment (DERHT) using different electric currents for 4 s. Their mechanical properties were then evaluated by micro hardness and three-point bending tests. After applying 4.5-5.5 A current, the hardness of NiTiTM increased with the increased current, whereas the change in hardness of 40oCuNiTi was slight. When 6 A current was applied, the hardness of the midspan of both wires significantly decreased. From the three-point bending test, unloading forces of NiTiTM increased after treating with 5.5 A current, while those of 40oCuNiTi decreased. However, both specimens lost their superelasticity when applied with 6 A current. In conclusion, after DERHT, various changes in mechanical properties can be noted in the different types of nickel titanium archwire.


2019 ◽  
Vol 58 (1) ◽  
pp. 218-225
Author(s):  
Damian S. Nakonieczny ◽  
Agata Sambok ◽  
Magdalena Antonowicz ◽  
Marcin Basiaga ◽  
Zbigniew K. Paszenda ◽  
...  

Abstract Purpose: This part of the study focuses on the influence of zirconia heat treatment for surface morphology, phase composition and mechanical properties Methods: Zirconia samples was prepared with ISO 13356:2013 and ISO 14704:2008 recommendations. X-ray diffraction, observations (SEM) and (AFM), microhardness (Olivera & Phara method), and static bending test (4PBT) were taken. Results: characterization of YSZ and high temperature heat treatment has clearly shown that the aging process influences the change in phase composition of the material, significantly worsening the topography. In turn, re-treatment of the high temperature made after the artificial aging process results in reverse transformation of the desired tetragonal phase, but does not affect the improvement of surface morphology. Conclusions: The research made it possible to assess the negative impact of the zirconium oxide aging simulation process. Because of the failure to achieve the intended results, it was also proved that the high-temperature re-processing was not appropriate.


2015 ◽  
Vol 14 (4) ◽  
pp. 043-054
Author(s):  
Jakub Gontarz ◽  
Jerzy Podgórski

The paper presents the laboratory test results of the mechanical properties of porous gypsum. Material for the study was obtained from gypsum Pro-Monta plate of 100mm thick. Based on the compression test of cubic samples, following mechanical properties were determined: compressive strength, Poisson's ratio and Young's modulus. Tensile strength was determined based on three-point bending test of rectangular cross section sample. Also a friction coefficients were investigated as follows: between the smoothed surface of the sample and a fiberboard pad, between a rough surfaces (after cutting) and fiberboard pad. A porosity of the material samples was determined using standard method. The material’s mechanical property values can be useful for modeling destruction and deformation of a porous gypsum undertaken by analytical and numerical methods.


2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2007 ◽  
Vol 26-28 ◽  
pp. 531-534
Author(s):  
B.M. Moon ◽  
Bong Hwan Kim ◽  
Je Sik Shin ◽  
Sang Mok Lee

For thin-walled casting development of austempered ductile iron (ADI), permanent mold casting and accompanied heat treatment practice were systematically investigated to suppress and/or remove chill defects of ductile cast iron (DCI) with various thickness of 2 to 9 mm and to ensure mechanical properties of the final ADI casting. Si content was increased up to 3.8% to reduce the chill formation tendency under a high cooling rate. The residual Mg content remarkably affected the nodule count, while the nodule size and spherodization were proven to have weak relationships. Austenitizing process followed by austempering was very sensitive to chemical compositions (Si and Sn) and heat treatment temperature. As a practical application, the steel bar coupler for a structural frame was tried to produce without subsequent machining.


Sign in / Sign up

Export Citation Format

Share Document