Development of the Green Composite Consists of Woodchips, Bamboo Fibers and Biodegradable

2008 ◽  
Vol 47-50 ◽  
pp. 322-325
Author(s):  
Hiroyuki Kinoshita ◽  
Koichi Kaizu ◽  
Miki Fukuda ◽  
Tokunaga Hitoo ◽  
Keisuke Koga ◽  
...  

From the viewpoint of the effective utilization of natural resources, the green composite which is produced by solidifying woodchips has been developed[1][2][3]. However, since this composite was solidified by the compressive load without the binder, the composite was very brittle and had no water resistance [4]. In this study, to improve these defects, the biodegradable resin is used as an adhesive and bamboo fibers are used as reinforced fibers. By using woodchips with two kinds of the particle size, bamboo fibers with three kinds of the length and a biodegradable adhesive, several kinds of specimens changed those mixing ratio were produced. The composite consists of the ingredients which are friendly to the environment. By the four-point bending test and Charpy impact test, the bending strength and impact strength of the composites were examined. From the experimental results, it was found that the high bending strength and high energy absorption were obtained in case where woodchips with the small particle size and long bamboo fibers were used. The proposed composite has the high strength, and the practical application is also possible.

1999 ◽  
Vol 14 (2) ◽  
pp. 418-424 ◽  
Author(s):  
Toshihiro Kasuga ◽  
Haruhiko Fujikawa ◽  
Yoshihiro Abe

Novel biomaterials for application to artificial bone with modulus of elasticity close to that of natural bone were prepared using bioresorbable poly-L-lactic acid (PLLA) and high-strength β–Ca(PO3)2 fibers treated with dilute NaOH solution. PLLA dissolved by using methylene chloride was mixed with the fibers. After drying the mixture, it was hot-pressed uniaxially under a pressure of 40 MPa at 180 °C, resulting in fabrication of a PLLA composite containing β–Ca(PO3)2 fibers. Almost no degradation in the bending strength was observed even when a large amount of the fibers (≈50 wt. %) was introduced, and the modulus of elasticity was increased effectively with increasing the fiber content. The PLLA composite with modulus of elasticity of <5 GPa similar to that of natural bone was found to be prepared when the fiber content was over 35 wt. %. The bending test of the composites showed that very high energy is consumed for their fracture and that the fracture proceeds step by step, even beyond the maximum stress.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7281
Author(s):  
Daniel Łączny ◽  
Marek Macko ◽  
Krzysztof Moraczewski ◽  
Zbigniew Szczepański ◽  
Andrzej Trafarski

This paper presents results of a study on the effect of filler size in the form of 15 wt% corn stalk (CS) fibers on the mechanical and thermomechanical properties of polylactide (PLA) matrix composites. In the test, polylactidic acid (PLA) is filled with four types of length of corn stalk fibers with a diameter of 1 mm, 1.6 mm, 2 mm and 4 mm. The composites were composed by single screw extrusion and then samples were prepared by injection molding. The mechanical properties of the composites were determined by static tensile test, static bending test and Charpy impact test while the thermo-mechanical properties were determined by dynamic mechanical thermal analysis (DMTA). The composite structures were also observed using X-ray microcomputed tomography and scanning electron microscopy. In the PLA/CS composites, as the filler fiber diameter increased, the degradation of mechanical properties relative to the matrix was observed including tensile strength (decrease 22.9–51.1%), bending strength (decrease 18.9–36.6%) and impact energy absorption (decrease 58.8–69.8%). On the basis of 3D images of the composite structures for the filler particles larger than 2 mm a weak dispersion with the filler was observed, which is reflected in a significant deterioration of the mechanical and thermomechanical properties of the composite. The best mechanical and thermomechanical properties were found in the composite with filler fiber of 1 mm diameter. Processing resulted in a more than 6-fold decrease in filler fiber length from 719 ± 190 µm, 893 ± 291 µm, 1073 ± 219 µm, and 1698 ± 636 µm for CS1, CS1.6, CS2, and CS4 fractions, respectively, to 104 ± 43 µm, 123 ± 60 µm, 173 ± 60 µm, and 227 ± 89 µm. The fabricated green composites with 1 to 2 mm corn stalk fiber filler are an alternative to traditional plastic based materials in some applications.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2602
Author(s):  
Huaqiao Wang ◽  
Jihong Chen ◽  
Zhichao Fan ◽  
Jun Xiao ◽  
Xianfeng Wang

Automated fiber placement (AFP) has been widely used as an advanced manufacturing technology for large and complex composite parts and the trajectory planning of the laying path is the primary task of AFP technology. Proposed in this paper is an experimental study on the effect of several different path planning placements on the mechanical behavior of laminated materials. The prepreg selected for the experiment was high-strength toughened epoxy resin T300 carbon fiber prepreg UH3033-150. The composite laminates with variable angles were prepared by an eight-tow seven-axis linkage laying machine. After the curing process, the composite laminates were conducted by tensile and bending test separately. The test results show that there exists an optimal planning path among these for which the tensile strength of the laminated specimens decreases slightly by only 3.889%, while the bending strength increases greatly by 16.68%. It can be found that for the specific planning path placement, the bending strength of the composite laminates is significantly improved regardless of the little difference in tensile strength, which shows the importance of path planning and this may be used as a guideline for future AFP process.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2005 ◽  
Vol 297-300 ◽  
pp. 2046-2051 ◽  
Author(s):  
Jin Wook Kim ◽  
B.W. Park ◽  
Seok Hwan Ahn ◽  
Ki Woo Nam

This paper reports for signal characteristics of before-and-after healing treatment SiC ceramics with crack healing ability. The elastic wave signals generated during the compress load by a Vickers indenter on the brittle materials were recorded in real time, and the waveforms of the individual signals were examined and classified based on their spectral characteristics. The compress loads were applied with the range from 9.8N to 294N. In a bulk SiC specimen, the AE signals occurred only when the load was compressive loading and unloading. But, in the after crack healing specimen of 294N only, even though the external compressive load was stopped and kept on holding constant load states, the AE signals occurred irregularly and continuously. The results of the WT and frequency analysis showed that these existed as the property of frequency in the limited range between 100kHz and about 200kHz. Three-point bending test was performed for the cracked and healed SiC specimens. Consequently the bending strength of the crack healed specimens was recovered completely, but most of the samples with the crack healed showed that the properties of the dominant frequency were comparatively lower than that of the bulk SiC samples. The classification of the wave signals can be used to develop algorithms for autonomous health monitoring systems of brittle material structures.


2016 ◽  
Vol 725 ◽  
pp. 60-65
Author(s):  
Asuka Hayashi ◽  
Takeshi Iwamoto

TRIP steel possesses high strength and excellent ductility. In addition, it is possible that TRIP steel indicates high energy absorption so that TRIP steel is expected to apply to automotive members. To design the members made of TRIP steel, it is important to clarify its energy absorption characteristic at various deformation rates. In the previous study, the energy absorption characteristic of TRIP steel is evaluated by J-integral under quasi-static to dynamic condition by using a thick specimen based on ASTM standard. However, by using such thick specimens, it is difficult to conduct the three-point bending test under impact condition because of high ductility in TRIP steel. A small punch (SP) test is the experimental method which can evaluate fracture parameters such as J-integral. By using a conventional use of small specimen in the SP test, it is possible to evaluate J-integral of TRIP steel under impact deformation. In this study, energy absorption characteristic of TRIP steel is investigated by SP test under different deflection rates. Then, the relationship between the values of J-integral obtained by previously conducted three-point bending test and the SP test of TRIP steel is discussed.


2007 ◽  
Vol 537-538 ◽  
pp. 41-46 ◽  
Author(s):  
László Kuzsella ◽  
Imre Szabó

The wood is one of the most favourable structural material. It appears on all fields of the ordinary life. It is difficult to say an application where the wood is not used due to its cheap price, availability and just simply the beauty. Beside of the wide range of process technologies a new process appeared. This process changes the properties of the material and brings many new applications to this traditional material. This process is the compression of the structural wood material. This publication deals with the effect of the compression on the mechanical properties of two hardwoods (beech: fagus sylvatica, oak: quercus) by the help of the three-point bending test and the Charpy impact test.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1885-1890 ◽  
Author(s):  
ZUOCHENG WANG ◽  
GUOTAO CUI ◽  
TAO SUN ◽  
WEIMIN GUO ◽  
XIULING ZHAO ◽  
...  

In our research, boron was added into the Nb -added high strength low alloy (HSLA) H -section steels. The contents of boron added were 4ppm, 8ppm and 11ppm, respectively. The mechanical properties of H -section steels with/without boron were examined by using uniaxial tensile test and Charpy impact test ( V -notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results indicate that boron gives a significant increase in impact toughness, especially in low temperature impact toughness, though it leads to an unremarkable increase in strength and plasticity. For instance, the absorbed energy at -40°C reaches up to 126J from 15J by 8ppm boron addition, and the ductile-brittle transition temperature declines by 20°C. It is shown that boron has a beneficial effect on grain refinement. The fracture mechanism is transited from cleavage fracture to dimple fracture due to boron addition.


2019 ◽  
Vol 5 (12) ◽  
pp. 2747-2761
Author(s):  
Anas Ibrahim Abdullah

In this study, an experimental investigation had conducted for six high strength laced reinforced concrete one-way slabs to discover the behavior of laced structural members after being exposed to fire flame (high temperature). Self-compacted concrete (SCC) had used to achieve easy casting and high strength concrete. All the adopted specimens were identical in their compressive strength of ( , geometric layout 2000 750 150 mm and reinforcement specifics except those of lacing steel content, three ratios of laced steel reinforcement of (0.0021, 0.0040 and 0.0060) were adopted. Three specimens were fired with a steady state temperature of  for two hours duration and then after the specimens were cooled suddenly by spraying water. The simply supported slabs were tested for flexure behavior with two line loads applied in the middle third of the slab (four-point bending test). The average residual percentage of cubic compression strength and splitting tensile strength were 57.5% and 50% respectively. The outcomes indicated that the residual bending strength of the burned slabs with laced ratios (0.0021, 0.004, 0.006) were (72.56, 70.54 and 70.82%) respectively. However; an increase in the deflection was gained to be (11.34, 14.67 and 17.22%) respectively with respect to non-burned specimens.


2018 ◽  
Vol 32 (6) ◽  
pp. 729-745 ◽  
Author(s):  
Olivier De Almeida ◽  
Jean-François Ferrero ◽  
Laurent Escalé ◽  
Gérard Bernhart

The aim of the work is to use Charpy impact test for quick evaluations of different Polyether-ether-ketone (PEEK)-reinforced composites to be used for impact protection. In the first part, the influence of weave pattern was first analysed by comparing the impact behaviour of three PEEK composites reinforced with plies of unidirectional (UD) tapes, 5H satin fabrics and 2 × 2 twill fabrics made of high-strength carbon fibres. In the second part, the influence of fibre nature was investigated for the same weave pattern. The impact behaviour of five 2 × 2 twill fabrics made from inorganic fibre (carbon, glass and basalt) and organic fibre (aramid and poly(p-phenylene-2,6-benzobisoxazole) (PBO)) has been compared. Two main types of failure modes were identified: a brittle behaviour mode with high failure strength and a highly deformable behaviour mode in which energy absorption is more important. The balance between brittle behaviour and highly deformable behaviour results from competition between the yarn crimp, weave pattern and fibre properties of the composite. Slight yarn crimp and small ply thickness increase the stiffness of the composite and induce brittle behaviour characterized by fibre failure in tension and a steep peak on the loading curves. This behaviour is observed in UD and 5H satin carbon-reinforced composites or 2 × 2 twill glass and basalt fabric-reinforced composites. In contrast, aramid and PBO 2 × 2 twill fabric composites exhibit high shear strength. The highly deformable behaviour of the specimens during the Charpy impact led, in the case of organic fibres, to a non-breakage of the fibres and consequently to a high level of energy absorption. This behaviour is necessarily interesting in armour applications.


Sign in / Sign up

Export Citation Format

Share Document