Microstructure and Hardness of Surface Composite Layer Fabricated by Evaporative Pattern Casting Technology

2012 ◽  
Vol 538-541 ◽  
pp. 302-305
Author(s):  
Ran Yang Zhang ◽  
Gang Yao Zhao ◽  
Yue Chen

Surface composite layer was fabricated on the cast steel matrix using the evaporative pattern casting (EPC) technology. The pre-coating with WC and Cr-Fe particles as raw reinforcements was reacted with matrix and formed the composite layer. Then, the microstructure and hardness of surface composite layer were investigated by Scanning Electron Microscope (SEM), Olympus Microscope (OM), Energy Dispersive X-ray Spectroscopy (EDAX) and Rockwell Apparatus. The results show that the composite layer can be divided into transitive layer and penetrated layer, and the component analysis shows that the microstructure distribution of the penetrated layer is homogeneous.

2021 ◽  
Vol 2101 (1) ◽  
pp. 012069
Author(s):  
Shibin Liu ◽  
Jing Wang ◽  
Jianwei Xu ◽  
Xiangcai Meng

Abstract Used Al-13wt%Si alloy was as raw material, the influence mechanism of Al-Sr, Al-P and Al-RE ternary compound modifier was studied by casting technology. The effects of P, Sr and RE modification on Al-13wt% Si were studied by metallographic microscope, scanning electron microscope and X-ray. The effects of the addition order and amount of modifier on the microstructure of Al-13wt% Si were investigated The results show that compared with a single modifier, P + RE + Sr ternary composite modifier has more obvious modification effect on eutectic silicon in Al-13%Si alloy: the microstructure of different morphology can be obtained by using different amount and order of adding modifier. When the amount and order of modifier are 0.5wt%Sr, 0.7wt%P, 1.5wt%RE,the eutectic silicon with small size and uniform distribution can be obtained. Eutectic silicon consists of 70 μm, the slender lamella is refined to 5 μm.


2011 ◽  
Vol 314-316 ◽  
pp. 236-239
Author(s):  
Xian Ming Sun ◽  
Jian Li ◽  
Gui Rong Yang ◽  
Wen Ming Song ◽  
Ying Ma

The Ni/ZrO2 composite powder was used as raw materials to fabricate the surface infiltrated composite layer on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer, Ni-based alloying layer and diffusion transition layer. The thickness of diffusion transition layer deceased with the increasing thickness of preform. The surface infiltrated composite layer was composed of ZrO2 ceramic particles, Cr2B and NiB intermetalic compounds as well as Ni-based solid solution. The Ni-based solid solution and Fe-based solid solution was the main composition for diffusion transition layer. The change of micro-hardness of surface infiltrated composite layer presents gradient from surface of infiltrated layer to substrate.


2014 ◽  
Vol 1055 ◽  
pp. 73-77
Author(s):  
Xian Ming Sun ◽  
Gui Rong Yang ◽  
Lei Wei ◽  
Yu Lan Liu

The surface composite layer Ni/ZrO2 on the ZG45 cast steel surface was fabricated through vacuum infiltration casting method. This paper researched on the Ni/ZrO2 composite infiltrated layer morphology, hardness and the friction property under fry friction. The results show that the main phase structure of the layer is ZrO2, Cr2B, NiB and FeNi. The macrohardness of the layer is HRC60~64. The micohardness presents gradient change. The maximum hardness appears at subsuface. The 10% ZrO2 composite infiltrated layer wear resistance increases 10 times and 15% ZrO2 composite infiltrated layer increases 22.6 times than ZG45 under the 100N load. The 10% ZrO2 composite infiltrated layer wear resistance increases 8.5 times and 15% ZrO2 composite infiltrated layer increases 21.9 times under 250N load. The wear resistance has greatly improved.


2011 ◽  
Vol 312-315 ◽  
pp. 500-505 ◽  
Author(s):  
Parviz Asadi ◽  
M.K. Besharati Givi ◽  
Mohsen Barmouz

In this study, friction stir processing (FSP) was applied to fabricate a Cu/SiC surface composite layer by incorporation of 5 µm SiC particles. Effects of the traverse speed and SiC volume fraction on the microstructure, hardness and powder distribution pattern of the developed surface layer were investigated. Optical and scanning electron microscopy (SEM) was employed to carry out the microstructural observations. Results show that increasing the volume fraction causes an intense decrease in the grain size and increase in the hardness of the developed surface. To achieve a uniform distribution of particles and uniform microstructure, the traverse speed should decrease as far as possible.


2013 ◽  
Vol 800 ◽  
pp. 321-324
Author(s):  
Li Xiao Jia ◽  
Qi Cui

The effect of technical factors on the quality of surface composite layer is studied by conventional cast-penetrating process. The result indicates that the high-quality surface composite layer is prone to get when pouring temperature is suitable and the suitable pouring temperature is 1650°C for little cast steel. Appropriate thickness of coating layer is benefit to get surface composite layer with high quality and the quality of sample with 5mm coating layer is better than other samples in test. Surface composite layer with high quality is easy to obtain when coating layer is located in the side of foundry mould.


2014 ◽  
Vol 21 (05) ◽  
pp. 1450065 ◽  
Author(s):  
BINFENG LU ◽  
LIPING LI ◽  
FENGGUI LU ◽  
XINHUA TANG

In this paper, ( Cr , Fe )7 C 3( M 7 C 3)/γ- Fe composite layer has been in situ fabricated on a low carbon steel surface by vacuum electron beam irradiation (VEB). Three kinds of powder mixtures were placed on a low carbon steel substrate, which was then irradiated with electron beam in vacuum condition. The microstructure and wear resistance of the composite layers has been studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester and tribological tester. The chemical composition of all specimens were carefully analyzed using energy-dispersive X-ray spectroscopy (EDAX) technique. Depending on three different powder mixtures, hypereutectic and hypoeutectic microstructures were obtained on surface composite layers. No pores and cracks were found on the coatings. The amount of carbides formed in the surface composite layer was mainly determined by carbon concentration. The microstructure close to the fusion line was largely primary austenite dendrite. The hardness and wear resistance of the surface composite layer has been greatly improved due to the extensive distribution of carbides.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Sign in / Sign up

Export Citation Format

Share Document