Explore the DMF Stripping Process of PET/Cotton Blended Fabric Dyed by Disperse/Direct Dyes

2012 ◽  
Vol 627 ◽  
pp. 200-204
Author(s):  
Zhi Feng Cai ◽  
Zhen Huai Niu ◽  
Jian Xi Ren ◽  
Jing Ya Li ◽  
Mei Niu ◽  
...  

For a long time, discoloring PET/cotton blend fabric is a difficult topic in textile industry. For it, this search work was carried out to stripping PET/cotton fabric dyed by disperse/direct dye with dimethyl formamide. Though experiment, results is discovered as follows: firstly, the PET/cotton fabric dyed by disperse/direct dye is swelled in the home-made swelling liquid. Then, put it into striping liquid which is mainly contain dimethyl formamide, and heat to 140°C,and keep 30 minutes. The stripping rate of three kinds of test samples can be over 80 percent, and some can reach 95 percent. While the strength retention rate also can reach about 90 Percent.

2012 ◽  
Vol 538-541 ◽  
pp. 2251-2255
Author(s):  
Sidra Saleemi ◽  
Nadir Ali Rind

This research was aimed to achieve the better washing fastness of direct dyes using sol-gel after treatment. Early work indicates that the after treatments used to improve the wash fastness were affect the hue, rubbing and light fastness of direct dye and were environmentally hazardous because of containing formaldehyde and copper salts. The present process consists of simple pad-dry-cure method which is optimized. The prime focus of using sol-gel after-treatment is to make better wash fastness without affecting the properties discussed above. A series of nanosols were prepared from the selected silane derivatives, which were then applied on dyed cotton samples. Different tests were conducted on coated samples and compared to control. This method shows tremendous effect of increasing the washing fastness of direct dyes on cotton without essential loss of properties, such as hue, rubbing, light fastness and handle of the fabric.


2021 ◽  
pp. 002199832110046
Author(s):  
Wei Feng ◽  
Chengwei Tang ◽  
Lei Liu ◽  
Jian Chen ◽  
Yang Zhang ◽  
...  

ZrB2 particles were preset to the C-AlSi interface to improve oxidation resistance of C/C preform and adjust the microstructure of the interpenetrated C/C-AlSi composite prepared through pressure infiltration of eutectic AlSi into a fiber fabric based porous C/C skeleton. Micro-morphology investigations suggested that the AlSi textures were changed from dendritic to petals-like state, and the nano to micro-scale ZrB2 particles were dispersed into AlSi and affected the distribution of Al and Si nearby carbon. Tests demonstrated that C/C-AlSi have slight lower density and thermal expansion coefficient, and higher original compressive strength, while C/C-ZrB2-AlSi composites presented an outstanding strength retention rate after thermal shock. Fracture and micro-morphology indicated that the influence of the preset ZrB2 to the interface of carbon and alloy greatly affected the generation and propagation of cracks, which determined the diverse compression behaviors of the composites before and after thermal shock.


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2014 ◽  
Vol 926-930 ◽  
pp. 141-144
Author(s):  
Xu Cui ◽  
Yan Jiao Huang ◽  
Yu Gao ◽  
Shuo Wang

In this paper, low temperature oxygen plasma treatment method was adopted to process the carbon fiber surface. Flexural Strength test method was utilized to represent f composite material flexural strength. This paper observed flexural failure morphology of composite material by aid of SEM, then it compared the mechanical property, hygroscopicitiy and flexural strength retention rate of composite material before and after the plasma treatment. Results showed that the optimum treatment conditions of carbon fiber were 300W treatment power and 15-minute treatment time. Under the condition, the highest flexural strength value be increased by 19.55%.Saturated bibulous is low and bibulous rate is slow, flexural strength retention rate is 94.9%. And at the same time PES-C resin matrix can be strengthened, which will further improve the mechanical properties of composite materials.


2021 ◽  
Vol 17 (6) ◽  
pp. 13
Author(s):  
Bochong Zhao ◽  
Kehui Deng

Dyeing & Weaving Weekly (1935-1941) is a scientific and technological periodical which has been published for a long time and has never been interrupted in the field of textile in modern China. The journal publishes a large number of the latest achievements in textile science and technology, and is an important historical material and typical case for the study of modern science and technology dissemination. Rich in content, Dyeing & Weaving Weekly focuses on solving practical problems in the textile industry and guiding the direction of scientific research, which not only promotes the dissemination of textile science and technology but also contributes to the development of the textile industry. Therefore, from the perspective of science and technology communication and the history of newspapers and periodicals, this paper examines the practice and communication strategies of Dyeing & Textile Weekly, in order to prove that Dyeing & Textile Weekly has a positive impact on science and technology communication in modern China, and also provides experience reference for the development of contemporary science and technology periodicals in China, which has certain reference significance.


2017 ◽  
Vol 46 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Monthon Nakpathom ◽  
Buppha Somboon ◽  
Nootsara Narumol ◽  
Rattanaphol Mongkholrattanasit

Purpose The present study aims to focus on the feasibility of using an aqueous extract from the fruit shell of Camellia oleifera Abel as a source of natural colourant in printing-paste preparation for pigment printing of cotton fabric. The effects of pre- and post-mordanting with three common metallic mordants, that is AlK(SO4)2, CuSO4 and FeSO4 on colour yield and colour fastness properties are also investigated. Design/methodology/approach The printing paste was prepared by mixing the concentrated Camellia oleifera Abel fruit shell extract solution with commercially available synthetic thickener and binder. The fabric sample was printed with the prepared printing paste using a flat-screen printing technique. To determine the effects of pre- and post-mordanting, AlK(SO4)2, CuSO4 and FeSO4 mordant aqueous solutions with various concentrations were applied using the pad-dry technique. Comparisons between printing with and without mordants were evaluated in terms of colour strength (K/S values) and colour fastness to washing, light, crocking and perspiration. Findings Without the mordants, the printed fabric had a yellowish brown shade with acceptable colour fastness properties, that is fair to good wash fastness, moderate light fastness, good to very good crocking fastness and fair to good perspiration fastness. The use of mordants, especially CuSO4 and FeSO4, not only enhanced colour strength but also imparted different colours to the fabric. Compared to the unmordanted fabrics, colour fastness properties were mostly comparable or improved in the mordanted fabrics depending on the type and concentration of mordants. Research limitations/implications Although in the case of CuSO4 the light fastness was increased to a good to very good level, it is recommended that the final print be produced with a concentration of less than 0.125 gL−1 to yield the print with the residual amount of Cu metal under the limit, that is less than 50 ppm as regulated by the Oeko-Tex® standard. Practical implications The obtained prints from Camellia oleifera Abel fruit shell extract provided shades with satisfactory colour fastness to washing, light, crocking and perspiration. The extract from Camellia oleifera Abel fruit shell has the potential to be used as an alternative to synthetic dye in the textile industry. Originality/value The use of Camellia oleifera Abel fruit shells, which are considered as abundant byproducts of tea seed oil production, as natural colouring agents for pigment printing of cotton fabric has been reported for the first time. It will minimise the environmental impact of this waste and create more valuable textile products.


2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940002
Author(s):  
Chiu-Chun Lai ◽  
Kuo-Shien Huang ◽  
Po-Wei Su ◽  
Chang-Mou Wu ◽  
Ching-Nan Huang

This study investigated dye–surfactant interactions between a series of modified Gemini surfactants and commercial direct dyes in aqueous solution and their corresponding effects on cotton fabric dyeing. A surface tension meter was also used to measure surface activities of compounds containing electrolyte under conditions similar to those in dyeing processes. The surface tension measurements showed lower than normal surface tension in surfactant solutions containing electrolyte. From the UV-Vis spectra, the isosbestic point indicated that dye–surfactant complexes had formed and existed as hydrophilic interaction between direct dyes and modified Gemini surfactants. When dyeing cotton fabric with red dye and orange dye, the presence of these surfactants decreased dye uptake rate but increased for blue dye because the dye–surfactant interaction had formed a hydrophilic complex.


2019 ◽  
Vol 90 (9-10) ◽  
pp. 991-1001 ◽  
Author(s):  
Zeynep Omerogullari Basyigit ◽  
Dilek Kut ◽  
Peter Hauser

Nowadays, the methods and techniques used in the textile industry are required to be environmentally friendly, and water and energy saving. In addition to these, they should transfer more than one functionality, in other words give multifunctionality to the textile material with reliable and sufficient results in terms of efficiency and permanence. With the increase in and diversification of today's industrial requirements, one functionality on the fabric may be insufficient to meet the requirements, and therefore the subject of multifunctionality holds an important place in the textile industry. Therefore, in this study flame retardant, antibacterial and water-repellent, single-layered multifunctional 100% cotton fabrics with different functionalities on different sides (back and face surfaces) of the fabric were obtained via a chemical foam application method, which has many advantages compared with conventional methods. In some of the experimental parts, impregnation and foam application methods were combined in the process in order to optimize the multifunctionality properties of the fabrics. In order to indicate the performance test of cotton fabric, vertical burning test, contact angle test, antibacterial test against Gram positive and Gram negative bacteria, color spectrum analysis and tearing strength test were carried out while, in terms of characterization tests, Fourier transform infrared (attenuated total reflectance) and scanning electron microscope analyses were performed. According to the test results, the flame retardancy effect of the samples was improved significantly while antibacterial results showed a 99% reduction of bacteria and the finished fabrics demonstrated improved water repellency with contact angles up to 125°. In addition, the functionalities were durable up to 50 washing and 50 drying cycles.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1268
Author(s):  
Jun Zhao ◽  
Xin Luo ◽  
Zike Wang ◽  
Shuaikai Feng ◽  
Xinglong Gong ◽  
...  

FRP bars and steel strands are widely used in civil engineering. In this study, three different types of high-strength reinforcement materials, carbon fiber reinforced polymer (CFRP) bar, glass fiber reinforced polymer (GFRP) bar, and steel strand, were investigated for their interfacial bond performance with concrete. A total of 90 sets of specimens were conducted to analyze the effects of various parameters such as the diameter of reinforcement, bond length, the grade of concrete and stirrup on the bond strength and residual bond strength. The results show that CFRP bars possess a higher bond strength retention rate than steel bars in the residual section. In addition, with the increase in bond length and diameter of the CFRP bar, the residual bond strength decreases, and the bond strength retention rate decreases. Furthermore, the bond strength retention rate of GFRP bars was found to be higher than that of CFRP bars. With the increase in grade of concrete, the bond strength and residual bond strength between GFRP bars and concrete increases, but the bond strength retention rate decreases. With an increase in bond length and diameter of the GFRP bar, the bond strength starts to decrease. Further, stirrup can also increase the bond strength and reduce the slip at the free end of GFRP bars. Moreover, the bond strength retention rate of the steel strand was found to be lower than CFRP and GFRP bar.


Sign in / Sign up

Export Citation Format

Share Document