Gold Immunochromatography Assay - A Newly Rapid Detection Technique for Aquatic Products

2013 ◽  
Vol 690-693 ◽  
pp. 1449-1454
Author(s):  
Yuan Wang ◽  
Hui Juan Yu ◽  
Bei Lei Qian ◽  
You Qiong Cai ◽  
Dong Mei Huang ◽  
...  

Gold immunochromatography assay (GICA) technique has the following characteristics: rapid and simple, high sensitivity, good specificity, no auxiliary equipment, ease of interpreting results, and satisfactory stability. The technique has become one of the most rapid and sensitive immunological detection methods, which is widely used in medical, biological and other fields. The article focuses on the basic principles and technical characteristics of GICA, and briefly describes the applications and future perspectives in the rapid detection of aquatic products.

Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 187 ◽  
Author(s):  
Pradip Gyawali ◽  
Sanjaya KC ◽  
David J. Beale ◽  
Joanne Hewitt

Reports of norovirus infections associated with the consumption of contaminated bivalve molluscan shellfish negatively impact both consumers and commercial shellfish operators. Current virus recovery and PCR detection methods can be expensive and time consuming. Due to the lack of rapid, user-friendly and onsite/infield methods, it has been difficult to establish an effective virus monitoring regime that is able to identify contamination points across the production line (i.e., farm-to-plate) to ensure shellfish quality. The focus of this review is to evaluate current norovirus detection methods and discuss emerging approaches. Recent advances in omics-based detection approaches have the potential to identify novel biomarkers that can be incorporated into rapid detection kits for onsite use. Furthermore, some omics techniques have the potential to simultaneously detect multiple enteric viruses that cause human disease. Other emerging technologies discussed include microfluidic, aptamer and biosensor-based detection methods developed to detect norovirus with high sensitivity from a simple matrix. Many of these approaches have the potential to be developed as user-friendly onsite detection kits with minimal costs. However, more collaborative efforts on research and development will be required to commercialize such products. Once developed, these emerging technologies could provide a way forward that minimizes public health risks associated with shellfish consumption.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2021 ◽  
pp. 104063872110275
Author(s):  
Yixin Xiao ◽  
Fan Yang ◽  
Fumin Liu ◽  
Linfang Cheng ◽  
Hangping Yao ◽  
...  

Avian influenza A(H5) viruses (avian IAVs) pose a major threat to the economy and public health. We developed an antigen-ELISA (ag-ELISA) and a colloidal gold–based immunochromatographic strip for the rapid detection of avian A(H5) viruses. Both detection methods displayed no cross-reactivity with other viruses (e.g., other avian IAVs, infectious bursal disease virus, Newcastle disease virus, infectious bronchitis virus, avian paramyxovirus). The ag-ELISA was sensitive down to 0.5 hemagglutinin (HA) units/100 µL of avian A(H5) viruses and 7.5 ng/mL of purified H5 HA proteins. The immunochromatographic strip was sensitive down to 1 HA unit/100 µL of avian A(H5) viruses. Both detection methods exhibited good reproducibility with CVs < 10%. For 200 random poultry samples, the sensitivity and specificity of the ag-ELISA were 92.6% and 98.8%, respectively, and for test strips were 88.9% and 98.3%, respectively. Both detection methods displayed high specificity, sensitivity, and stability, making them suitable for rapid detection and field investigation of avian A(H5) viruses.


Author(s):  
Jonghoon Kim ◽  
Nohyun Lee ◽  
Taeghwan Hyeon

Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


2021 ◽  
Vol 368 (6) ◽  
Author(s):  
Liwen Zhang ◽  
Qingyu Lv ◽  
Yuling Zheng ◽  
Xuan Chen ◽  
Decong Kong ◽  
...  

ABSTRACT T-2 is a common mycotoxin contaminating cereal crops. Chronic consumption of food contaminated with T-2 toxin can lead to death, so simple and accurate detection methods in food and feed are necessary. In this paper, we establish a highly sensitive and accurate method for detecting T-2 toxin using AlphaLISA. The system consists of acceptor beads labeled with T-2-bovine serum albumin (BSA), streptavidin-labeled donor beads and biotinylated T-2 antibodies. T-2 in the sample matrix competes with T-2-BSA for antibodies. Adding biotinylated antibodies to the test well followed by T-2 and T-2-BSA acceptor beads yielded a detection range of 0.03–500 ng/mL. The half-maximal inhibitory concentration was 2.28 ng/mL and the coefficient of variation was &lt;10%. In addition, this method had no cross-reaction with other related mycotoxins. This optimized method for extracting T-2 from food and feed samples achieved a recovery rate of approximately 90% in T-2 concentrations as low as 1 ng/mL, better than the performance of a commercial ELISA kit. This competitive AlphaLISA method offers high sensitivity, good specificity, good repeatability and simple operation for detecting T-2 toxin in food and feed.


Coronaviruses ◽  
2021 ◽  
Vol 02 ◽  
Author(s):  
Latifa Khattabi ◽  
Mustapha Mounir Bouhenna ◽  
Feriel Sellam

: The present paper elucidates the conceivable application of two key molecules in SARS-CoV-2 detection of suspected infected persons. These molecules were selected from the basis of ACE-2 and S protein strong interaction that allows virus attachment to its host cells, on the other hand specific immunocompetant effectors generated by human immune system during the infection. Several testing procedures are already used to diagnose SARS-CoV-2 infection, particularly RT-PCR technique. ELISA and LFIA are possible assays for the employment of shACE-2/ hAc-anti-S (the molecules of interest) as the main agents of the test and confer a dual principal functions (capture and detection). The future diagnostic kits involving shACE-2 and hAc-anti-S will have the particularity of high sensitivity and rapid detection in addition to its advantage of relatively easy conception. It could be largely considered as a technical advanced kits in regards to the current SARS-CoV-2 diagnostic immunoassays.


2015 ◽  
Vol 7 (7) ◽  
pp. 3072-3079 ◽  
Author(s):  
Muxin Yu ◽  
Lina Wu ◽  
Tianxun Huang ◽  
Shuo Wang ◽  
Xiaomei Yan

This paper describes a method for the rapid detection and enumeration of total bacteria in drinking water and tea beverages.


2016 ◽  
Vol 8 (7) ◽  
pp. 1602-1608 ◽  
Author(s):  
Shintaro Pang ◽  
Lili He

Aptamer–gold nanoparticle (AuNP) based colorimetric assays have become increasingly popular as viable rapid detection methods, but the molecular interactions governing the mechanism and successful interpretation of color changes have not been explored well.


2012 ◽  
Vol 229-231 ◽  
pp. 1423-1426
Author(s):  
Yong Zheng Wang ◽  
Lei Jiang ◽  
Mao Zhen Yue ◽  
Su Fang Bian

In this paper, three detection methods were analyzed to determine the chlorine precipitation from the flue gas: Silver nitrate volumetric analysis (SNVA), Volhard method (VM) and Mercuric thiocyanate spectrophotometric method (MTSM). Results indicated that SNVA and VM were simple and convenient, but unsuitable for the detection of blend fuel due to the high lower limit. MTSM was suitable for biomass and coal co-combustion for its low lower limit and high sensitivity. In addition, MTSM needed less sample solution, which made it more suitable for multiple measurements to reduce errors, and the maximum proportional error was only 3.5%.


Sign in / Sign up

Export Citation Format

Share Document