Water Absorption and Tensile Strength of Coconut Filter Fibers/Polypropylene Composites

2013 ◽  
Vol 702 ◽  
pp. 207-212 ◽  
Author(s):  
N.P.G. Suardana ◽  
I. Putu Lokantara ◽  
Y.J. Piao ◽  
J.K. Lim

In this study, we evaluated water absorption and tensile properties of coconut filter fiber reinforced polypropylene composites. The fibers were subjected to various immersion times for 0.5, 1, and 3 h in 0.5 % acrylic acid solution at room temperature and 0.5 h at 70 oC. The treated fibers were used as reinforcement of polypropylene composites. Water absorption of treated fiber composites was lower than those of untreated fiber composite. Boiling in water significantly affect water absorption rate of the composites. The tensile strength and elastic modulus of treated fiber are higher than untreated fiber. They show a decrease in tendency when the immersion time increased. Tensile strength and elastic modulus of composites with AA-treated at 70 oC fiber are the highest.

2012 ◽  
Vol 626 ◽  
pp. 449-453 ◽  
Author(s):  
Razaina Mat Taib ◽  
Nurul Mujahidah Ahmad Khairuddin ◽  
Zainal Arifin Mohd Ishak

Composites of polypropylene (PP) and kenaf fiber (KF) were immersed in water at room temperature. The fiber was treated with alkaline solution. A compatibilizer, maleic anhydride-grafted polypropylene (MAPP) was added in some composite formulations. Composite with alkali treated fibers (KFA) showed similar tensile strength but lower tensile modulus than the composite with untreated fiber, KF. Addition of MAPP was crucial to improve the tensile properties and water resistance of either PP/KF or PP/KFA composites. Alkali treatment adversely affected the water absorption behavior of PP/KF composite.


2017 ◽  
Vol 890 ◽  
pp. 12-15 ◽  
Author(s):  
Elammaran Jayamani ◽  
Muhammad Khusairy bin Bakri

In this research, the alkaline treated and untreated sugarcane bagasse was used as reinforcement with unsaturated polyester to make composites. The composites were made with 0 to 20 weight percentage of fibers using compression molding. Acoustical, dielectrical and mechanical properties of the composites were studied according to the American Society for Testing Materials (ASTM) standards. The result shows that the composites with higher sugarcane bagasse loading show higher acoustical and dielectrical properties. The composites tensile strength increased up to 10wt% of fiber loading and then starts decreasing eventually. Tensile strength and sound absorption coefficients of alkali treated fiber composites shown slightly better results than untreated fiber composites. The dielectric constant of treated fiber composites were lower compared with untreated fiber composites.


2017 ◽  
Vol 757 ◽  
pp. 40-45 ◽  
Author(s):  
Sawitree Suckley ◽  
Piyanuch Deenuch ◽  
Natchaya Disjareon ◽  
Suttinun Phongtamrug

In this research work, natural fiber reinforced composites of bagasse fiber-epoxy resin were prepared. The chemical treatments using sodium hydroxide (NaOH) at 1,3,5,7 wt% were carried out to modify the fiber properties. Thermogravimetric analysis (TGA) was used to study the thermal stability of treated and untreated fibers. The effects of fiber treatment and fiber contents on mechanical properties of bagasse-epoxy composite were investigated. The characteristics of bagasse-epoxy resin composites exposed to high temperature as well as water absorption behavior were determined. The results from the TGA revealed that alkalization improved thermal stability of bagasse fiber. Treated bagasse fibers also had lower moisture content as compared to untreated fiber. The experimental results showed that the flexural properties of composites prepared from treated bagasse fibers were enhanced as compared to the untreated fiber composite. Thermal degradation study demonstrated that treated bagasse fiber composites experienced lower weight loss than untreated fiber composites. From water absorption study, it was observed that the treated bagasse fiber composites had lower water absorption values than those of untreated fiber based composites.


2021 ◽  
Vol 35 (1) ◽  
pp. 171-184
Author(s):  
A. H. Birniwa ◽  
S. S. Abdullahi ◽  
M. Y. Yakasai ◽  
A. Ismaila

In this study, various treated, untreated, and treated kenaf/glass fiber composites were fabricated using epoxy resin. A portion of kenaf fibers were subjected to treatment with alkali, sub-portion was taken for benzoyl peroxide and potassium permanganate prior to composite fabrication. This treatment on the composite material was undertaken to achieve improved modification of the interface between the matrix and fiber bond. A portion of the glass fiber was used for enhancing the mechanical properties of the hybrid composite. The tensile strength, flexural, density, water absorption and chemical resistance of the composites were analyzed using standard methods. FTIR was conducted on the fiber to ascertain the chemical treatment on the fibers, FESEM was used for the morphological study. The results obtained showed that the tensile and flexural strength improved from 46.45-298.3 kgf, and 10.5-54.7 kgf, respectively, in the composite samples. Chemical resistance of the kenaf fiber treated potassium permanganate composite improved compared to the untreated fiber composite in both cases. The density and water absorption properties of the composites were found to decrease in the treated fibers compared to untreated fiber composites, this treated composites showed less water absorption and density. The FTIR result revealed that reaction has taken place between the fiber and the treatment reagent. Hence, fiber modification has improved the properties of the composites due to increase in fiber-matrix interaction.                     KEY WORDS: Chemical properties, Epoxy resin, Hybrid, Kenaf, Mechanical strength, Natural fiber   Bull. Chem. Soc. Ethiop. 2021, 35(1), 171-184. DOI: https://dx.doi.org/10.4314/bcse.v35i1.15


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
W. H. Haniffah ◽  
S. M. Sapuan ◽  
K. Abdan ◽  
M. Khalid ◽  
M. Hasan ◽  
...  

This research studied the degradation of tensile properties of kenaf fibre reinforced polypropylene composites due to cyclic immersion into two different solutions, as well as comparison of the developed composites’ tensile properties under continuous and cyclic immersion. Composites with 40% and 60% fibre loadings were immersed in tap water and bleach for 4 cycles. Each cycle consisted of 3 days of immersion and 4 days of conditioning in room temperature (28°C and 55% humidity). The tensile strength and modulus of composites were affected by fibre composition, type of liquid of immersion, and number of cycles. The number of immersion cycles and conditioning caused degradation to tensile strength and modulus of kenaf fibre reinforced polypropylene composites. Continuous and cyclic immersion in bleach caused tensile strength of the composites to differ significantly whereas, for tensile modulus, the difference was insignificant in any immersion and fibre loadings. However, continuous immersion in the bleach reduced the tensile strength of composites more compared to cyclic immersion. These preliminary results suggest further evaluation of the suitability of kenaf fibre reinforced polypropylene composites for potential bathroom application where the composites will be exposed to water/liquid in cyclic manner due to discontinuous usage of bathroom.


2018 ◽  
Vol 25 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Niharika Mohanta ◽  
Samir K. Acharya

AbstractThis experimental study was conducted to investigate the effect of NaOH concentration and treatment time on the flexural properties ofLuffa cylindricafiber-reinforced epoxy composites. Significant improvement (up to 84.92%) in the flexural properties for the treated fiber composite compared with the untreated fiber composite was observed. Both treated and untreated fiber composites were then subjected to different environmental treatments (saline water, distilled water, and subzero temperature). To find out the changes in flexural strength immediately after treatment, the same test was carried out on the composites. Degradation in the flexural strength of both treated and untreated fiber composites, when subjected to environmental treatments, was observed. They were found within the range of 2%–20% and were found to be least in subzero treatment. The SEM micrograph indicates that alkali treatment is effective in improving the adhesion between the fiber and matrix.


2017 ◽  
Vol 24 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Varun Mittal ◽  
Shishir Sinha

AbstractThe aim of this research was to study the feasibility of using wheat straw fiber with epoxy resin for developing natural fiber-polymer composites. For this purpose, the epoxy resin was reinforced with 5, 10, 15, 20, and 25 wt.% of the wheat straw fiber with the help of the hand lay-up technique. Further, in order to improve the composite characteristic, wheat straw fibers were treated with three different concentrations of alkali (1%, 3%, and 5%). The mechanical and water absorption properties of the treated fiber composites were characterized and compared with those of untreated fiber-filled epoxy composites. It was observed that the mechanical properties and water resistance were reduced with the increase in wheat straw fiber loading from 5 to 25 wt.%. Among the three levels of alkali treatment, the composite made with 3% alkali-treated fiber exhibited superior mechanical properties than the other untreated and treated fiber composites, which pointed to an efficient fiber-matrix adhesion. The scanning electron microscope was used to observe the surface features of the wheat straw fiber.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Md. Mamunur Rashid ◽  
Sabrin A. Samad ◽  
M. A. Gafur ◽  
Md. Rakibul Qadir ◽  
A. M. Sarwaruddin Chowdhury

This research studied the physicomechanical as well as morphological properties of alkali treated (NaOH and KMnO4) and untreated banana bark fiber (BBF) reinforced polypropylene composites. A detailed structural and morphological characterization was performed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and mechanical properties testing (tensile strength, flexural strength, and microhardness). Chemical treatments improved the hydrophobic property of the fiber and it is found to be better for KMnO4treatment. Composites with 0, 5, 10, and 15 wt.% loadings were then compared for water uptake studies and revealed that KMnO4treated fiber composites absorb less water compared to others. KMnO4treatment with 15% fiber loading improved the tensile strength, flexural strength, and microhardness of the composites compared to raw and NaOH treated fiber loadings. TGA analysis also shows onset temperature at 400~500°C that is associated with the decomposition of the banana fibers constituents including lignin, cellulose, and hemicelluloses which suggests better thermomechanical stability. All of the values suggest that 15% KMnO4treated banana bark fiber (BBF)/PP composites were found to be better than those of the raw and NaOH treated ones.


2018 ◽  
Vol 930 ◽  
pp. 201-206
Author(s):  
Lazaro Araújo Rohen ◽  
Anna Carolina Cerqueira Neves ◽  
Jheison Lopes dos Santos ◽  
Lucio Fabio Cassiano Nascimento ◽  
Sergio Neves Monteiro ◽  
...  

The present work compares the tensile properties of polyester and epoxy matrix composites reinforced with hemp fibers. Polyester and epoxy reinforced with different volume fractions of hemp fibers up to 30% were prepared according to ASTM D-638-14 and tensile tested. The epoxy matrix composites reinforced with 30% of fibers presented tensile strength of 53 MPa, while those of polyester matrix, 25 MPa. The elastic modulus of the epoxy matrix composites was 1.75 GPa and that of the polyester matrix 4.05 GPa. The tests showed that the resistance of the epoxy composites reinforced with hemp fiber is superior to those of polyester matrix. However, the stiffness of the polyester/hemp fiber composites is higher than the epoxy/hemp fiber ones.


2011 ◽  
Vol 71-78 ◽  
pp. 1154-1157 ◽  
Author(s):  
Zhi Fei Liao ◽  
Guo Lin Song ◽  
Feng Shi ◽  
Zhan Song Yin ◽  
You Yang ◽  
...  

The PLA/Rice straw fiber composites with various content ratios were prepared by using an internal mixer and a flatten press. The thermal properties, interface effect and mechanical performance of as-prepared PLA/Rice straw fiber composites were studied by mechanical performance measurement, TG, DSC and SEM technique. It was found that increasing the content of rice straw fiber leads to the decrease of the melting temperature while the improvement of the crystallinity of these composites. Introducing the rice straw fibers into PLA matrix does not result in any enhancement of mechanical property. However, the tensile strength of the composite increases as the content of rice straw fiber increases from 10% to 30%. The interface effect between fibers and PLA was obviously observed by SEM photo. It was thought such an issue could be improved by the addition of appropriate coupling agents into the composites.


Sign in / Sign up

Export Citation Format

Share Document