CFD Simulation of the Fluidized Bed Applied in the Synthesis of Benzene Series Organosilicon

2013 ◽  
Vol 753-755 ◽  
pp. 2663-2666
Author(s):  
Xin Feng Han ◽  
Jian Long Li ◽  
Ning Xu

The mathematical model of gas-solid flow 2D fluidized bed was established. The CFD simulation was carried out with commercial software FLUENT6.3 by using Eulerian-Eulerian multiphase models, based on the kinetic theory of granular flow and PC-SIMPLE algorithm. In order to provide a basis on optimizing the operating conditions of the fluidized bed applied in benzene series organosilicon reactor, the processes of bubble formation, growth and disappearance under different cases were analyzed.

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 200 ◽  
Author(s):  
Krzysztof Rajski ◽  
Jan Danielewicz ◽  
Ewa Brychcy

In the present work, the effects of different operating parameters on the performance of a gravity-assisted heat pipe-based indirect evaporative cooler (GAHP-based IEC) were investigated. The aim of the theoretical study is to evaluate accurately the cooling performance indicators, such as the coefficient of performance (COP), wet bulb effectiveness, and cooling capacity. To predict the effectiveness of the air cooler under a variety of conditions, the comprehensive calculation method was adopted. A mathematical model was developed to simulate numerically the heat and mass transfer processes. The mathematical model was validated adequately using experimental data from the literature. Based on the conducted numerical simulations, the most favorable ranges of operating conditions for the GAHP-based IEC were established. Moreover, the conducted studies could contribute to the further development of novel evaporative cooling systems employing gravity-assisted heat pipes as efficient equipment for transferring heat.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 245 ◽  
Author(s):  
Der-Sheng Chan ◽  
Meng-I Kuo

The development of an effective drying performance of the fluidized bed dryer (FBD) is crucial to reduce drying costs. The objective of this study was to investigate the drying performance of wheat germ (WG) with different time-temperature combinations in the FBD. The WG was dried at different set temperatures of 80, 100 and 120 °C. The moisture content (MC) and water activity (WA) of WG were measured. A mathematical model was proposed to develop an optimal drying condition. The changes in the MC of WG during drying in the FBD could be divided into the decreased period, the dynamic equilibrium period and the increased period. The product temperature of 45 °C and WA of 0.3 of WG drying could be attained by different time-temperature combinations. The mathematical model, which was developed in conjunction with different time-temperature combinations, could predict the dehydration time and the condensation time of WG for optimization the drying conditions. The WG dehydration at the heating stage and the WG condensation at the cooling stage could also be evaluated by the dehydration flux and the condensation flux, respectively. The optimal drying performance of WG exists in a compromise between promoting dehydration and reducing condensation. Information obtained from the analysis of dehydration flux and condensation flux with experimental data and simulation gave the guidelines for performing an effective drying of WG in the FBD.


2012 ◽  
Vol 268-270 ◽  
pp. 1517-1522 ◽  
Author(s):  
Guo Jin Chen ◽  
Ting Ting Liu ◽  
Ni Jin ◽  
You Ping Gong ◽  
Huo Qing Feng

The logistics and loading machinery is the typical hydromechatronics integrated system. How to solve the reasonable power match in the driving and lifting process of the logistics and loading machinery, we need to establish the mathematical model of the driving and lifting system, and analyze their control characteristics. Aiming at the load requirements for different operating conditions, this paper studies respectively the dynamic characteristics of the driving and lifting system. Through simulation and computation, the control methods and strategies based on the best performance are proposed. That lays the foundation for the optimization design of the logistics and loading machinery.


Author(s):  
Dmitriy V. Guzei ◽  
Andrey V. Minakov ◽  
Vasiliy I. Panteleev ◽  
Maksim I. Pryazhnikov ◽  
Dmitriy V. Platonov ◽  
...  

The mathematical model of heat and mass transfer processes in the combustion chamber of diesel generator units with valve inductor generators has been developed. The mathematical model takes into account the actual geometry of the combustion chamber and the operating conditions of the diesel engine. A study of the main characteristics of a diesel generator in a wide range of modes of operation has been carried out. In addition to energy characteristics, environmental parameters have been considered


Author(s):  
Emma Frosina ◽  
Adolfo Senatore ◽  
Dario Buono ◽  
Michele Pavanetto ◽  
Micaela Olivetti ◽  
...  

The paper introduces a methodology aimed to optimize the performance of hydraulic components; in particular the design of a new two way flow control valve studying the valve internal fluid-dynamic behavior will be introduced. The methodology is based on the definition of a CFD tridimensional fluid-dynamic model. In fact, the model can help engineers to develop the best geometry, to optimize the valve performance, reducing the prototyping requirement and finally the time-to-market and, consequently, the development costs. At first, the original spool internal geometry has been evaluated and studied to tune the mathematical model and to validate it comparing its results with the data obtained through an experimental campaign. Then, the same approach has been applied to investigate several different internal spool geometries to define the best one in all operating conditions. A limited number of solutions have been prototyped and tested to verify the mathematical model predictions, in order to find the best configuration whose performances are consistent with the assigned objective for the component.


Author(s):  
Luca Andreassi ◽  
Claudia Toro ◽  
Stefano Ubertini

In the present study, the results of the numerical implementation of a mathematical model of a planar anode-supported SOFC are reported. In particular, model results are validated and discussed when the fuel is a mixture of hydrogen and carbon monoxide, focusing on the importance of simulating direct oxidation of carbon monoxide. The mathematical model is solved in a 3D environment and the key issue is the validation comparing with experimental data, which is made in different operating conditions to establish the reliability of the presented model. The results show the importance of simulating direct oxidation of carbon monoxide and its effect on the fuel cell performance.


Author(s):  
D. Obiso ◽  
M. Reuter ◽  
A. Richter

AbstractThe hydrodynamics of a Top Submerged Lance (TSL) slag bath are investigated here by means of Computational Fluid Dynamics (CFD) simulation. The object of the study is the pilot-scale furnace located at TU Bergakademie Freiberg, where air is injected beneath the slag bath with a top lance. The fluid dynamics system is evaluated at operating conditions, with experimentally measured slag physical properties and real flow rates. The numerical approach is based on the Volume Of Fluid (VOF) model, a front-tracking method that allows the interface to be geometrically reconstructed. Using a fine computational grid, the multiphase interactions are calculated with a high level of detail, revealing the mechanisms of bubble formation and bath dynamics. Two lance configurations are compared, with and without a swirler, and the effect on the hydrodynamics is discussed with regards to key features of the process, such as bubble dynamics, slag splashing, the interface area, rotational sloshing, and bath mixing. The model predicts bubble frequencies in the range of 2.5 to 3 Hz and captures rotational sloshing waves with half the frequencies of the bubble detachment. These results agree with real furnace data from the literature, proving the reliability of the computing model and adding value to the empirical understanding of the process, thanks to the direct observation of the resolved multiphase flow features. The comparative study indicates that the air swirler has an overall positive effect in addition to the proposed enhancement of lance cooling, with an increase in the bath mixing and a reduction in the splashing.


2009 ◽  
Vol 13 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Mladen Stojiljkovic ◽  
Branislav Stojanovic ◽  
Jelena Janevski ◽  
Gradimir Ilic

The mathematical model of unsteady one-dimensional gas to particles heat transfer for non-isothermal fluidized bed with periodic heating of solid particles has been described. The method of numerical solution of governing differential equations, the algorithm and the computer program, have been presented. By using mathematical model and computer program, the temperature profiles for interstitial gas, gas in bubbles, and solid particles along the height of fluidized bed in function of time, have been determined. The results obtained on the basis of prediction method are compared to the experimental results of the authors; the satisfactory agreement has been found for interstitial gas temperature and solid particle temperature. On the basis of this comparison, the mathematical model has been verified.


2021 ◽  
Vol 2 (2) ◽  
pp. 47-53
Author(s):  
Proenza Y. Roger ◽  
Camejo C. José Emilio ◽  
Ramos H. Rubén

A procedure is presented for the quantification of the degradation index of Photovoltaic Generators, based on the quantification of the operational losses inherent in the system, which allows maintaining the nominal operating conditions and by the warranty terms of the photovoltaic generator. A photovoltaic generator connected to the network with a nominal power of 7.5 kWp, installed in the Solar Energy Research Center of Santiago de Cuba, is used to evaluate and validate the procedure. The starting point is the mathematical model of the photovoltaic generator, then the operational losses of the photovoltaic generator are quantified and the mathematical model is adjusted to real conditions, through a polynomial adjustment.  The results obtained show that the photovoltaic generator presents deviations in terms of the nominal power generation, because the operational losses are 7% with respect to the values ​​given by the manufacturer.


2001 ◽  
Author(s):  
Jozef Portacha ◽  
Adam Smyk ◽  
Alicja Zielinska ◽  
Jerzy K. Fiszdon

Abstract Heat accumulation in cogenerating plants allows increased electricity production during highest demand period. It also causes change of the overall electricity production. Changes in cogeneration coefficient follow the same trend. This paper examines the effect on the average cogeneration factor caused by adding the heat accumulator to the existing CHP. Variation of this coefficient influences the plant economics, since electrical energy is most expensive during the peak hours. In the model presented the operating conditions vary due to variations in the surroundings temperature and due to cyclical operation of the heat accumulator. Assumptions made, the mathematical model, and numerical method used are also presented.


Sign in / Sign up

Export Citation Format

Share Document