Study on Microstructure and Properties of Aged Cu-Ti-Zr-RE Alloy

2009 ◽  
Vol 79-82 ◽  
pp. 1687-1690
Author(s):  
Xing Min Cao ◽  
Yu Bin Zhu ◽  
Fuan Guo ◽  
Chao Jian Xiang

Electrical conductivity, tensile strength and micro-hardness of Cu-3.5wt.%Ti-0.1wt.%Zr-RE alloy were investigated after optimizing technics of plastic deformation and the heat treatment. The results show that good combination of the physical and mechanical properties, such as tensile strength 1160 MPa, micro-hardness 335 Hv and electrical conductivity 15 IACS% can be obtained on peak aging at 420°C for 7 h. Maximum strength was associated with the precipitation of metastable, ordered and coherent β/ (Cu4Ti) phase on peak aging. Then the strength decreased due to the precipitation of β (Cu3Ti) phase in alloys overaged.

Author(s):  
Oleksandr Babachenko ◽  
Ganna Kononenko ◽  
Katerina Domina ◽  
Rostislav Podolskyi ◽  
Olena Safronova

A review of research in the field of modeling experiments on heat treatment and pressure treatment of metal and the impact on the physical and mechanical properties of steel with a chemical composition of 0.59% C, 0.31% Si, 0.73% Mn. A mathematical model for calculating the physical and mechanical properties of steel in the process of hot plastic deformation has been developed and prospects for further development of research in this area have been identified. As a result of modeling, the following functions were obtained: the amount of deformation in the direction of the applied force divided by the initial length of the material. The coefficient of elongation of the material with the actual chemical composition at a temperature of 1250 ± 10 ° C, which was 0.32. When comparing the values of the load that was applied to the GPA in the laboratory and the results of calculations using the developed model, it was found that they have close values of about 45 MPa. This confirms the adequacy of the obtained model.A review of research in the field of modeling experiments on heat treatment and pressure treatment of metal and the impact on the physical and mechanical properties of steel with a chemical composition of 0.59% C, 0.31% Si, 0.73% Mn. A mathematical model for calculating the physical and mechanical properties of steel in the process of hot plastic deformation has been developed and prospects for further development of research in this area have been identified. As a result of modeling, the following functions were obtained: the amount of deformation in the direction of the applied force divided by the initial length of the material. The coefficient of elongation of the material with the actual chemical composition at a temperature of 1250 ± 10 ° C, which was 0.32. When comparing the values of the load that was applied to the GPA in the laboratory and the results of calculations using the developed model, it was found that they have close values of about 45 MPa. This confirms the adequacy of the obtained model.


2018 ◽  
Vol 80 (6) ◽  
Author(s):  
D. N. Nguyen ◽  
A. T. Hoang ◽  
X. D. Pham ◽  
M. T. Sai ◽  
M. Q. Chau ◽  
...  

This paper investigates a high electrical conductivity and high strength of alloys based on Cu-Ni-Si system It proclaimed the results of the effect of tin (Sn) component on the mechanical properties and microstructure of Cu-Ni-Sn alloy. The conditions for processing the Cu-Ni-Si alloy were presented, the analysis of microstructure and mechanical properties after heat treatment was examined by X-ray, SEM, EDS and specialized machines. The results showed that with 3% mass of Sn added into the Cu-Ni-Sn alloy along with heat treatment and deformation, the hardness value reached the range of 221-240HV, the tensile strength and elastic limit reached around 1060MPa and 903MPa respectively. However, after heat treatment and deformation for the Cu-Ni-Sn alloy based on 6% mass of Sn, the hardness value reached the range of 221-318HV, the tensile strength and elastic limit were respectively 222MPa and 263MPa higher than those of the Cu-Ni-Sn alloy with 3% mass of Sn. The result from X-ray analysis showed the deflection of peaks. Nonetheless, the new phases were not observed in SEM and EDS, contrariwise, generated modular structure was considered as the proof of the Spinodal cluster. This fact might be explained by two mechanisms: deformation mechanism and Spinodal decomposition.


2011 ◽  
Vol 228-229 ◽  
pp. 968-974 ◽  
Author(s):  
Chun Mei Li ◽  
Zhi Qian Chen ◽  
Su Min Zeng ◽  
Nan Pu Cheng ◽  
Quan Li ◽  
...  

The effect of stepped aging treatment including two-stepped retrogression aging and retrogression reaging treatment on the mechanical properties, electrical conductivity and the microstructure of AA7085 has been investigated. Electron microscopy observations were used to analyze the microstructures and tensile fracture surfaces of AA7085 processed via various treatment schedules. Besides, X-ray diffractometer and differential scanning calorimeter were used to explore the thermodynamic factors of heat treatment. Through the investigation of the effect of the retrogression time on the properties and microstructure of AA7085, the optimized retrogression time was confirmed. The results of comparing retrogression aging and retrogression reaging treatment showed that through RRA treatment, higher conductivity and fracture toughness were gained. Through the optimized RRA treatment based on appropriate retrogression time, the tensile strength, elongation, fracture toughness and conductivity of AA7085 were raised to 660MPa, 12%,36.6MPa•m1/2and 38.1%IACS.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1034 ◽  
Author(s):  
Andrey Medvedev ◽  
Alexander Arutyunyan ◽  
Ivan Lomakin ◽  
Anton Bondarenko ◽  
Vil Kazykhanov ◽  
...  

This paper focuses on the mechanical properties, electrical conductivity and fatigue performance of ultra-fine-grained (UFG) Al-Mg-Si wires processed by a complex severe plastic deformation route. It is shown that the nanostructural design via equal channel angular pressing (ECAP) Conform followed by heat treatment and cold drawing leads to the combination of enhanced tensile strength, sufficient ductility, enhanced electrical conductivity, and improved fatigue strength compared to the wires after traditional T81 thermo-mechanical treatment used in wire manufacturing. The Processing-microstructure-properties relationship in the studied material is discussed.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1829
Author(s):  
Yu Quan ◽  
Baotong Hu ◽  
Shuai Fu ◽  
Detian Wan ◽  
Yiwang Bao ◽  
...  

In this paper, in situ V2C-reinforced Cu composites were successfully fabricated by hot pressing at 750 °C under 25 MPa using Cu and V2SnC powders. Due to decomposition of V2SnC to V2C and Sn during sintering, Sn atoms entered the crystal structure of Cu. Therefore, final compositions of composites consisted of Cu(Sn) and V2C phases. Here, copper composites with 0, 5, 10, 20, and 30 vol.% V2C were designed. Their microstructures and physical and mechanical properties were systematically investigated. It was observed that with increasing V2C content, electrical conductivity decreased from 0.589 × 108 S·m−1 to 0.034 × 108 S·m−1 and thermal conductivity decreased from 384.36 W⋅m−1⋅K−1 to 24.65 W·m−1·K−1, while Vickers hardness increased from 52.6 HV to 334 HV. Furthermore, it was found that composites with 20 vol.% V2C had the highest tensile strength (440 MPa).


Author(s):  
S. K. Padisala ◽  
A. Bhardwaj ◽  
K. Poluri ◽  
A. K. Gupta

Nitinol shape memory alloy is well known for its shape memory effect and super elastic effect. In the present work, the improvement of mechanical properties of nitinol alloy like yield strength, ultimate tensile strength and micro-hardness is discussed along with the study of evolution of micro-structure after every pass to extend the applications of shape memory alloys into high strength application areas. Severe plastic deformation processes are usually adopted for producing fine grain structures which improve the mechanical properties of a material. One such severe deformation process is constrained groove pressing, which is considered as one of the best severe plastic deformation techniques for sheet metals. The results of constrained groove pressing process on nitinol alloy show that the yield strength and the ultimate tensile strength have increased by about 3.6 times 2.5 times respectively, with an increment of 50% and 74% in micro-hardness after 1st pass of constrained groove pressing and 2nd pass of constrained groove pressing respectively. Microstructure shows increase in martensitic phase after constrained groove pressing processing. Increasing in twinning and grain boundary density can be observed in constrained groove pressing processed nitinol, which are the reasons for the tremendous increase in the strength of the alloy. Thus, the constrained groove pressing process on nitinol alloy can increase its range of application for high strength requirements.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2359
Author(s):  
Harmaen Ahmad Saffian ◽  
Masayuki Yamaguchi ◽  
Hidayah Ariffin ◽  
Khalina Abdan ◽  
Nur Kartinee Kassim ◽  
...  

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


Sign in / Sign up

Export Citation Format

Share Document