Effects of SiO2 Nanoparticles on Dielectric Characteristic of Aloe Vera Paste

2013 ◽  
Vol 858 ◽  
pp. 74-79 ◽  
Author(s):  
Li Qian Khor ◽  
Kuan Yew Cheong

Natural Aloe vera paste has been reported as an alternative organic dielectric material. In this study, natural Aloe vera paste incorporated with silicon dioxide (SiO2) nanoparticles (NPs) has been investigated. The natural Aloe vera paste with different weight loading (0.5 to 3.8 wt%) of SiO2 NPs was screen printed on aluminum (Al) layer supported by a soda lime glass substrate and dried at room temperature. The solidified sample with 1.5 wt% of SiO2 NPs showed the lowest leakage current density. Next, the solidified samples were additional dried in an oven at 40°C for 30 minutes to study its effect against room temperature. The additional drying process facilitated cross-linking on natural Aloe vera layer and consequently enhanced the dielectric properties of the natural Aloe vera with 1.5 wt% of SiO2 NPs, whereby leakage current and dielectric constant were decreased and increased, respectively.

2014 ◽  
Vol 14 (24) ◽  
pp. 3507-3513 ◽  
Author(s):  
Rashed Al Amin ◽  
Sardar Masud Rana ◽  
Samioul Hasan Talukder ◽  
Md. Shahid Iqbal ◽  
Md. Anzan-Uz-Z ◽  
...  

2004 ◽  
Vol 836 ◽  
Author(s):  
Ki-Hyun Kim ◽  
Young-Gab Chun ◽  
Byung-Ok Park ◽  
Kyung-Hoon Yoon

ABSTRACTCIGS nanoparticles for the CIGS absorber layer have been synthesized by low temperature colloidal routes. The CIGS absorber layers for solar cells have been prepared by spray deposition of CIGS nanoparticle precursors (∼20 nm) in glove box under inert atmosphere. An automatic air atomizing nozzle spray system with computer controlled X-Y step motor system was used to spray. The nanoparticle precursor CIGS film was deposited onto molybdenum-coated soda-lime glass substrates (2.5 cm × 5.0 cm) heated to 160°C. The film thickness in the range of 2 μm ± 0.3 μm was attained by spraying of 3 mM colloidal over an area of 12.5 cm2. The coalescence between particles was observed in the CIGS absorber layer under post-treatment of over 550 °C. This is related to the reactive sintering among the nanoparticles to reduce surface energy of the particles. The CuxSe thin film, formed on Mo film by evaporation, improved adhesion between CIGS and Mo layers and enhanced the coalescence of the particles in the CIGS layer. These are closely related to the fluxing of Cu2Se phase which has relatively low melting temperature. The CdS buffer layer was deposited on the CIGS/Mo/soda-lime glass substrate by chemical bath deposition. The CIGS nanoparticles-based absorber layers were characterized by using energy dispersive spectroscopy (EDS), x-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM).


1995 ◽  
Vol 388 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Yoshikazu Nakamura ◽  
Shigekazu Hirayama ◽  
Yuusaku Naota

AbstractAluminum nitride (AlN) thin films have been synthesized by ion-beam assisted deposition method. Film deposition has been performed on the substrates of silicon single crystal, soda-lime glass and alumin A. the influence of the substrate roughness on the film roughness is studied. the substrate temperature has been kept at room temperature and 473K and the kinetic energy of the incident nitrogen ion beam and the deposition rate have been fixed to 0.5 keV and 0.07 nm/s, respectively. the microstructure of the synthesized films has been examined by X-ray diffraction (XRD) and the surface morphology has been observed by atomic force microscopy(AFM). IN the XRD patterns of films synthesized at both room temperature and 473K, the diffraction line indicating the alN (10*0) can be discerned and the broad peak composed of two lines indicating the a1N (00*2) and a1N (10*1) planes is also observed. aFM observations for 100 nm films reveal that (1) the surface of the films synthesized on the silicon single crystal and soda-lime glass substrates is uniform and smooth on the nanometer scale, (2) the average roughness of the films synthesized on the alumina substrate is similar to that of the substrate, suggesting the evaluation of the average roughness of the film itself is difficult in the case of the rough substrate, and (3) the average roughness increases with increasing the substrate temperature.


2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


2021 ◽  
Author(s):  
Champika Samarasekera ◽  
Bo Tan ◽  
Krishnan Venkatakrishnan

The current state-of-the-art in nanotip synthesis relies on techniques that utilize elaborate precursor chemicals, catalysts, or vacuum conditions, and any combination thereof. To realize their ultimate potential, synthesized nanotips require simpler fabrication techniques that allow for control over their final nano-morphology. We present a unique, dry, catalyst-free, and ambient condition method for creating densely clustered, flower-like, sodium oxide (Na2O) nanotips with controllable tip widths. Femtosecond laser ablation of a soda-lime glass substrate at a megahertz repetition rate, with nitrogen flow, was employed to generate nanotips with base and head widths as small as 100 and 20 nm respectively, and lengths as long as 10 μm. Control of the nanotip widths was demonstrated via laser dwell time with longer dwell times producing denser clusters of thinner nanotips. Energy dispersive X-ray analysis reveals that nanotip composition is Na2O. A new formation mechanism is proposed, involving an electrostatic effect between ionized nitrogen and polar Na2O. The synthesized nanotips may potentially be used in antibacterial and hydrogen storage applications. PACS: 81 Materials science; 81.07.-b nanoscale materials and structures: fabrication and characterization; 81.16.-c methods of micro- and nanofabrication and processing


1997 ◽  
Vol 12 (6) ◽  
pp. 1456-1462 ◽  
Author(s):  
Takahiro Wada ◽  
Naoki Kohara ◽  
Takayuki Negami ◽  
Mikihiko Nishitani

A Cu-rich CuInSe2 (CIS) thin film with an atomic ratio of Cu/In = 3.6 was characterized using high-resolution and analytical transmission electron microscopy (TEM). The film was deposited on a Mo coated soda-lime glass substrate by physical vapor deposition. Rutherford backscattering spectroscopy (RBS) and Auger electron spectroscopy (AES) showed that a secondary impurity phase such as Cu2Se segregated on the CIS surface. The three-dimensional crystallographic relationship between the Cu2Se and CIS was found to be (111)Cu2Se (111)CIS and [011]Cu2Se || [011]CIS where the Cu2Se and CIS had pseudocubic structures with a = 5.8 Å and a = 11.6 Å, respectively. CuPt type CIS could be observed near the interface between the Cu2Se and CIS. A growth model of CIS crystals under Cu and Se excess condition is proposed based on the results of TEM. The characteristics of the CIS growth model in Cu-rich CIS film are summarized as follows: (i) CIS crystals are produced from Cu2Se crystals by a “topotactic reaction,” and (ii) sphalerite and/or CuPt type CIS are produced first after the reaction, and (iii) the metastable sphalerite and/or CuPt type CIS is then transformed to the stable chalcopyrite CIS phase.


2010 ◽  
Vol 24 (31) ◽  
pp. 3033-3040 ◽  
Author(s):  
C. W. CHEN ◽  
C. H. TSENG ◽  
C. Y. HSU ◽  
C. P. CHOU ◽  
K. H. HOU

Al 2 O 3-doped zinc oxide (in AZO, the Al 2 O 3 contents are approximately 2 wt.%) films have been grown by radio frequency (RF) magnetron sputtering at room temperature under varied sputtering pressures ranging from 3.5–15 mTorr. The electrical resistivity of AZO films is about 2.22×10-3 Ωcm (sheet resistance ~ 89 Ω/square for a thickness ~ 250 nm), and the visible range transmittance is about 80% at the argon sputtering pressure of 15 mTorr and a RF power of 100 W. This study analyzes the structural, morphological, electrical and optical properties of AZO thin films grown on soda-lime glass substrate with 2, 5, and 10 nm thick Al buffer layers (and SiO 2 buffer). For the films deposited on the 2 nm thick Al buffer layer, we obtained a c-axis-oriented AZO/ Al thin film on glass with the XRD full-width at half maximum (FWHM) of 0.31 and root mean square (RMS) surface roughness of about 3.22 nm. The lowest resistivity of 9.46×10-4 Ωcm (sheet resistance ~ 37.87 Ω/square for a thickness ~ 250 nm) and a high transmittance (80%) were obtained by applying a 2 nm thick Al buffer layer. In contrast, the resistivity was slightly increased by applying the SiO 2 buffer layer.


2014 ◽  
Vol 1082 ◽  
pp. 420-423
Author(s):  
Muhammad Hafiz Ab Aziz ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
Hussin Kamarudin ◽  
Wan Mokhdzani Wan Norhaimi ◽  
...  

Silicon wafer bonding opens possibilities in creating MEMS devices and anodic bonding is found to be the most relevant wafer bonding technique process in constructing and packaging MEMS. This paper reports on the bond strength comparison between silicon and different glass based materials via anodic bonding. Two types of glass based surface used pyrex and soda lime glass. Bonding temperature is set at room temperature while a high direct current voltage of 15kV. Experiments were carried out using an in-house designed anodic bonder and the bond strength were measured using a bond strength tester. The anodic approach process was done in two sets which are before and after the cleaning process for each sample. Results show that all samples showed higher bond strength after the cleaning process. Silicon-soda lime glass have higher bonding strength of 1950 Pa compared to silicon-pyrex bonding which only gives 1850 Pa of bond strength.


2014 ◽  
Vol 2 (4) ◽  
Author(s):  
Richard E. Billo ◽  
Paul A. Wilson ◽  
John W. Priest ◽  
Mario Romero-Ortega ◽  
Shannon R. Brunskill ◽  
...  

A slump molding process was developed to place microchannel geometries in a soda-lime glass substrate for a lab-on-chip bioanalytical device. The process was developed to overcome the biological and chemical reactivity associated with current polymer lab-on-a-chip substrates, and as an alternative to using more expensive glass material. A high speed micro mill and UV laser micromachining center were used to fabricate the negative geometries in the graphite mold material that was used. The slumping process of the soda-lime glass was done using a glass kiln. Microchannel dimensions were in the mesa scale range of 50 μm width × 10 μm depth. The heating schedule for slump molding of the soda-lime glass to take its final shape to these dimensions was determined and documented. The functionality of the slumping process and resultant soda-lime glass device was validated through murine nerve tissue experiments conducted through the bioanalytical device that was developed. The research represented a novel use of slump molding, a process traditionally known for producing artistic works for: (a) embossing engineered microchannels and (b) reliably processing a soda-lime glass substrate, a material known to be difficult to work with due to its poor physical properties.


Sign in / Sign up

Export Citation Format

Share Document