Durability Test Research of Asphalt Mixture with Rubber Particles under the Condition of Freeze-Thaw Cycle

2014 ◽  
Vol 919-921 ◽  
pp. 1096-1099 ◽  
Author(s):  
Hong Yu Xu ◽  
Song Yang Dang ◽  
De Yong Cui

Influence of freeze-thaw cyclic on the durability of asphalt mixture with rubber particles was researched by experiment. Based on the typed AC-13 continuous dense graded aggregate, adding the amount of 1%~3% of rubber particles into graded aggregate, the splitting tensile strength and the void fraction of asphalt mixture with rubber particles under the condition of freeze-thaw cycle were measured. The test results show that the splitting tensile strength decreases and the void fraction increases with the increase of the number of freeze-thaw cycle. With the increase of rubber particle content, the splitting tensile strength decreases and the void fraction increases under the same number of freeze-thaw cycle. When rubber particles are added to graded aggregate, the splitting tensile strength of asphalt mixture is reduced to some extent. And when the rubber particle content attains 2%, the TSR (tensile strength ratio) achieves the optimal value.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Ruihua Hao ◽  
Zezhou Guo

Particle size grading impacts salt-frost heaving and dissolution collapse events of salinized soil on northwestern China’s arid and cold region highways. However, the influencing mechanisms remain unclear and the impact of varying particle size grading needs further investigation. Hence, this study focused on these effects and the number of freeze–thaw cycles on the characteristic changes in highway salinized soil in arid and cold regions. Three soil columns with different gradations were prepared to explore the gradation and the number of freeze–thaw cycle affects on salinized soil’s salt-frost heaving and dissolution collapse characteristics. The multi-functional physical simulation platform conducted multiple freeze–thaw cyclic tests in the laboratory. Test results confirmed significant and conclusive effects of gradation and the number of freeze–thaw cycles on salinized soil’s salt-frost heaving and dissolution collapse behaviors. Poorly graded salinized soil with high coarse particle content caused repeated freeze and thaw engineering hazards, significantly affecting salinized soil’s displacement and deformation behaviors during freezing. Contrarily, an increased range of fine particles more easily involved the characteristics of salinized soil during thawing. Therefore, the fourth freeze–thaw cycle was a crucial time node. After four freeze–thaw cycles, the displacement and deformation of original salinized soil and B-grade salinized soil samples (poorly graded with high fine particle content) tended to be stable. In contrast, the displacement and deformation of A-grade salinized soil samples (poorly graded with high coarse particle content) increased the growth rate. The present research results contribute to in-depth knowledge of the effects of gradation and freeze–thaw cycles on the characteristics of salinized soil in northwestern China, providing excellent referenced data support for the prevention and control of highway salinized soil failures and other engineering projects in arid and cold regions of northwest China.


2013 ◽  
Vol 303-306 ◽  
pp. 2501-2504 ◽  
Author(s):  
Pan Pan ◽  
Chang Jun Sun ◽  
Ning Tang ◽  
Ming Yu Chen ◽  
Shao Peng Wu

Conductive asphalt concrete, a kind of intelligent materials, can serve as asphalt solar collector, asphalt heater and self monitor. And moisture damage is one of the most common performance degradation of asphalt concrete. This paper investigates the volume properties of conductive asphalt concrete based on Freeze-thaw cycles. Marshall specimen was frozen and thawed repeatedly and a cycle consists 16h at -18oC and 8h at 60oC. The change of air void and weight loss ratio were chosen to evaluate the moisture resistance of conductive asphalt concrete. Three types of asphalt mixture (control, CAC 1 and CAC 2) were used to study the effect of initial void and material composition on moisture resistance. The results show that both the framework structures and the material composition have a great effect on antifreeze-thaw property of asphalt concrete, which provides an efficient guidance for application of this technology in pavement.


2018 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Guirong Ma ◽  
Guojin Tan ◽  
Xun Sun ◽  
...  

The main distresses of asphalt pavements in seasonally frozen regions are due to the effects of water action, freeze-thaw cycles, and so on. Basalt fiber, as an eco-friendly mineral fiber with high mechanical performance, has been adopted to reinforce asphalt mixture in order to improve its mechanical properties. This study investigated the freeze-thaw damage characteristics of asphalt mixtures reinforced with eco-friendly basalt fiber by volume and mechanical properties—air voids, splitting tensile strength, and indirect tensile stiffness modulus tests. Test results indicated that asphalt mixtures reinforced with eco-friendly basalt fiber had better mechanical properties (i.e., splitting tensile strength and indirect tensile stiffness modulus) before and after freeze-thaw cycles. Furthermore, this study developed logistic damage models of asphalt mixtures in terms of the damage characteristics, and found that adding basalt fiber could significantly reduce the damage degree by about 25%, and slow down the damage grow rate by about 45% compared with control group without basalt fiber. Moreover, multi-variable grey models (GM) (1,N) were established for modelling the damage characteristics of asphalt mixtures under the effect of freeze-thaw cycles. GM (1,3) was proven as an effective prediction model to perform better in prediction accuracy compared to GM (1,2).


2011 ◽  
Vol 266 ◽  
pp. 135-138 ◽  
Author(s):  
Yu Qing Yuan ◽  
Dan Ying Gao ◽  
Jun Zhao ◽  
Ji Yu Tang ◽  
Shao Hua Zhai

To improve water stability, we mixed asphalt mixture with cement, slag micro powders and lignin fibers, respectively. The Marshall immersion and freeze-thaw splitting tests were carried out. It is shown that cement replacing mineral powders can improve the water stability of asphalt mixture, especially at the content of 1/3 mineral powders, with a Marshall stability of 11.50 kN and a soaking residual stability of 92.46%, increasing by 10.79% and 6.58%, respectively, than those without any cement. According to the results of cement replaced by slag micro powders, its stability increases by 1.38kN, and the soaking residual stability is 90.64%, but the freeze-thaw splitting tensile strength slightly decreases. It is indicated that the water stability of the asphalt mixture can be improved by adding 0.3% lignin fibers, the soaking residual stability increasing from 86.75% to 97.41% and the ratio of freeze-thaw splitting tensile strength rising from 60.94% to 80.29%. It is concluded that the best effect can be reached by adding 0.3% lignin fibers.


2012 ◽  
Vol 443-444 ◽  
pp. 632-636
Author(s):  
Yong Li Xu ◽  
Bai Zhen Ming Zhang ◽  
Le Tao ◽  
Zhen Zhen Xing

The tensile test to the fiberglass geogrid had been carried on, in the normal temperature, the low temperature, the water immersion, the freezing and the freeze-thaw cycle and so on conditions. The results indicated, the fiberglass geogrid had achieved saturated after been immersed 12h, the water absorption was about 20%, the tensile strength reduced approximately 80%; the tensile strength was dropped slightly on the next freezing test and the freeze-thaw cycle test. So it could be stated that the fiberglass geogrid had the good low temperature performance. Then the interlaminar shearing test had been conducted in the different temperature to the composite structure in which the fiberglass geogrid was laid or not. The result showed that the interlaminar shearing strength had weaken about 20% when laid down the fiberglass geogrid, and along with temperature drop, the shearing strength increased gradually. This research provide the reference for used the fiberglass geogrid correctly in the cold region, had great practical value.


2015 ◽  
Vol 744-746 ◽  
pp. 1244-1248 ◽  
Author(s):  
Rui Xiong ◽  
Lu Wang

In order to predict the durability of asphalt mixture under freeze-thaw cycles, the porosity and splitting strength of asphalt mixture under freeze-thaw cycle are studied, and GM(1, N) model in grey system theory is established. The results show that there is a good correlation between the porosity and the splitting strength in the durability factors of asphalt mixture. The value of the porosity increases with the increasing of the freeze-thaw times, and the value of the splitting strength decreased with the increasing of the freeze-thaw times. The GM(1, N) grey forecasting model can predict the porosity and the splitting strength well, and the calculated results agree well with the experimental data. Therefore, it is feasible to introduce the grey system theory in the prediction study of the durability of asphalt mixture.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3339
Author(s):  
Fuyu Wang ◽  
Xingyuan Qin ◽  
Weichen Pang ◽  
Wensheng Wang

In order to ensure smooth traffic and driving safety, deicing salt or snow melting agents are usually adopted to solve the problem of traffic jams and prevent pavement surfaces from freezing. The objective of this present study is to investigate the performance deterioration evaluation of asphalt mixture under the chloride salt erosion environment. Five chloride salt solution concentrations were designed and the uniaxial static compression creep test, low-temperature IDT test, freeze-thaw splitting test, and freeze-thaw cycle test were carried out for asphalt mixtures (AC-16) soaked in chloride salt solution. Results showed that with the increase in chloride salt solution concentration, the high-temperature stability, low-temperature crack resistance, and water stability of the asphalt mixture decreases. Moreover, the high-temperature stability, low-temperature crack resistance, and water stability of the asphalt mixture show a decreasing trend under different chloride salt solution concentrations following the negative cubic polynomial function. Based on the viscoelastic analysis, chloride salt solution could reduce the ability of the asphalt mixture to resist instantaneous elastic deformation and permanent deformation, and this influence will become more obvious with the increase in chloride salt solution concentration. In addition, the salt freeze-thaw cycle test indicated that in the early stage of freeze-thaw cycles, the splitting tensile strength of the asphalt mixture decreases rapidly, then tends to be flat, and then decreases rapidly. This study explores the performance damage law of asphalt mixture under salt corrosion, and the analysis results of this study could provide some references for the chloride salt dosage in the snow melting project while spreading deicing salt.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1667
Author(s):  
Chaoming Xia ◽  
Chaofan Wu ◽  
Kefei Liu ◽  
Kang Jiang

To evaluate the durability of bamboo fiber asphalt mixture using four gradation schemes, the durability of the bamboo fiber asphalt mixture is studied considering three aspects: ageing durability, freeze-thaw cycle durability and fatigue durability through the Marshall test, indoor ageing test, uniaxial compression test, low-temperature bending test, immersion Marshall test, freeze-thaw splitting test and four-point bending fatigue test. Nonfiber asphalt mixture and lignin fiber asphalt mixture were used as control groups. The results show that the addition of plant fiber can effectively improve the durability of asphalt mixture. Bamboo fiber modified asphalt mastic has good ductility and adhesion due to its rough surface and good oil absorption performance. Bamboo fiber asphalt mixture has better and more stable low-temperature ageing durability and moisture ageing durability than lignin fiber asphalt mixture, but its mechanical property is weaker than the latter. The improvement effect of the two fibers on the freeze-thaw cycle durability of asphalt mixture is basically the same. Bamboo fiber can improve the flexibility of the mixture and delay the development of cracks so that the mixture has good fatigue durability. The smaller the void ratio, the thicker the asphalt film, and the denser the structure of the mixture, the better the durability. The durability of the stone mastic asphalt (SMA) gradation mixture is better than that of asphalt concrete (AC) gradation. The material composition and aggregate gradation of plant fiber asphalt mixture have a great influence on its durability. In the future, it is necessary to establish a multiparameter comprehensive evaluation index system among fiber type and properties, mixture gradation and durability so as to realize the directional regulation of the durability of different fiber asphalt mixtures. Bamboo fiber is a reliable substitute for lignin fiber, and further research on improving its surface properties and dispersion uniformity can be carried out in the future.


2012 ◽  
Vol 531-532 ◽  
pp. 689-694
Author(s):  
Xie Xing Tang ◽  
Xiao Yong Luo ◽  
Qi Sun ◽  
Ya Chuan Kuang

In this paper, GFRP bolts in diameter of 25mm are tested through freeze-thaw cycle by 50, 100 and 150 times to study their change law of appearance, weight, strength and elastic modulus. As reflected from the test results, after the freeze-thaw cycle, the appearance and weight of GFRP bolts are basically not changed. As the freeze-thaw cycle increases from 50 times to 100 times, the strength of bolts decreases gradually. After 50, 100 and 150 times of freeze-thaw cycle, the ultimate tensile strength of bolt decreases by 2.82%, 4.35% and 8.84%, respectively. During the process that the times of freeze-thaw cycle increase from 50 to 100, the elastic modulus of GFRP bolts grows gradually. After 50, 100 and 150 times of freeze-thaw cycle, the elastic modulus increases by 1.42%, 2.68% and 3.92%, respectively. The freeze-thaw cycle leads to embrittlement of GFRP materials and weakness of ductility, while not obviously.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yazhen Sun ◽  
Man Deng ◽  
Youlin Ye ◽  
Lin Gao ◽  
Huaizhi Zhang ◽  
...  

To improve the antifreeze-thaw performance of asphalt pavement in the seasonal freezing regions, the temperature and the time of freeze-thaw test were redesigned based on the climatic characteristics of the regions, and the splitting tensile strength tests were carried out to determine the low-temperature performance of the asphalt mixture under the influence of the gradation and the asphalt-aggregate ratio. A mathematical model was built to investigate the freeze-thaw damage law. According to the test results of splitting tensile strength of the asphalt mixture under freeze-thaw cycles, the probabilistic damage variable of the asphalt mixture was redefined and a physical probability model was built to analyse the freeze-thaw damage. Based on the freeze-thaw damage development process and the mechanism of the asphalt mixture, the effective measures to improve the antifreeze-thaw performance were provided and demonstrated through the correlations among the damage parameters (the shape parameter α, the scale factor λ, and the gradient factor ν) and the freeze-thaw resistance of the asphalt mixture. The test results showed that the splitting tensile strength decreased with the increase of the number of the freeze-thaw cycles. With the same gradation, the splitting freeze-thaw damage degree of the asphalt mixture with 5.8% asphalt-aggregate ratio is about 6% less than others after the 18th freeze-thaw cycle. The freeze-thaw resistance increases with the asphalt-aggregate ratio. With the same asphalt-aggregate ratio, the splitting freeze-thaw damage degree of S-grade mixtures is about 11.8% higher than that of Z-grade mixtures. S-grade mixtures have positive effects on the freeze-thaw resistance. The results suggest new measures for further investigation on the design and maintenance of the asphalt mixture in the seasonal freezing regions.


Sign in / Sign up

Export Citation Format

Share Document