Mix Proportion and Mechanical Properties of Recycled PET-Brick Powder Mixture

2014 ◽  
Vol 919-921 ◽  
pp. 1990-1993
Author(s):  
Fan Bo Meng ◽  
Yi Zhang Hu ◽  
Hong Ya Yue

This research determined the proper gradation of clay brick powder, PET to clay brick powder ratio, and curing temperature. Density, compressive, and tensile strength of the PET-Brick Powder Mixture were also studied. The research results indicate that the mixture had lower density and water absorption. The strength increased quickly and reached the 94% of 28-day strength at 6 hours. The proper initial curing temperature is 180°C.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


2018 ◽  
Vol 777 ◽  
pp. 465-470
Author(s):  
Sutas Janbuala ◽  
Mana Eambua ◽  
Arpapan Satayavibul ◽  
Watcharakhon Nethan

The objective of this study was to recycle powdered marble dust to improve mechanical properties and thermal conductivity of lightweight clay bricks. Varying amounts of powdered marble dust (10, 20, 30, and 40 vol.%) were added to a lightweight clay brick at the firing temperatures of 900, 1000, and 1100 °C. When higher quantities of powdered marble dust were added, the values of porosity and water absorption increased while those of thermal conductivity and bulk density decreased. The decrease in apparent porosity and water absorption were also affected by the increase in firing temperature. The most desirable properties of the clay bricks were obtained for the powdered marble dust content of 40 vol.% and firing temperature 900 °C: bulk density of 1.20 g/cm3, compressive strength 9.2 MPa, thermal conductivity 0.32 W/m.K, and water absorption 22.5%.


2020 ◽  
Vol 833 ◽  
pp. 228-232
Author(s):  
Md. Jihad Miah ◽  
Mohammad Shamim Miah ◽  
Anisa Sultana ◽  
Taukir Ahmed Shamim ◽  
Md Ashraful Alom

This work performs experimental investigations on concrete made with difference replacement percentage of first-class burnt clay brick aggregate (0, 10, 20, 30, 40, 50, 60, 80, and 100%) by steel slag (SS) aggregate. The aim is to evaluate the mechanical properties as well as durability performances, additionally, water absorption porosity test is performed to investigate the influence of steel slag aggregate on the durability of tested concrete. The experimental results have shown that the compressive strength was improved significantly due to the replacement of brick aggregate by steel slag aggregate. The crushing strength of concrete made with 100% steel slag aggregate has gained up to 70% more than the control concrete (100% brick aggregate). However, the porosity of concrete was reduced with the adding percentage of brick aggregate by steel slag aggregate which is consistent with the compressive strength results. Further, a quite good agreement between compressive strength and porosity was observed as well.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Anna Kufel ◽  
Stanisław Kuciel

The aim of the research was to study the effects of adding natural fillers to a polypropylene (PP) matrix on mechanical and physical properties of hybrid composites. The 10%, 15%, and 20% by weight basalt fibers (BF) and ground hazelnut shells (HS) were added to the PP matrix. Composites were produced by making use of an injection molding method. Tensile strength, tensile modulus, strain at break, Charpy impact strength, and the coefficient of thermal expansion were determined. The influence of temperature, thermal aging, and water absorption on mechanical properties was also investigated. In addition, short-time creep tests were carried out. To characterize the morphology and the filler distribution within the matrix, a scanning electron microscope (SEM) was used. The results showed that the addition of the two types of filler enhanced mechanical properties. Furthermore, improvements in thermal stability were monitored. After water absorption, the changes in the tensile properties of the tested composites were moderate. However, thermal aging caused a decrease in tensile strength and tensile modulus.


2011 ◽  
Vol 217-218 ◽  
pp. 347-352 ◽  
Author(s):  
Chun Xia He ◽  
Jun Jun Liu ◽  
Pan Fang Xue ◽  
Hong Yan Gu

The influence of the rice husks powder (RHP) content and its particle size distribution on the composite’s tensile strength, fracturing elongation ratio, flexural strength and flexural elastic modulus has been investigated. Respective water absorption and thermal properties of PP composites incorporated with different proportion of RHP have also been analyzed. The microstructure of fractured surfaces was further observed in scanning electron microscopy (SEM). The results showed that the composites with RHP of 245 μm have higher mechanical properties. The tensile strength and fracturing elongation ratio decrease with the increase of RHP content, and reach peak values in 30% RHP content. Water absorption and volume expansion ratio of the composite increase with the increasing of RHP content. Flexural strength and flexural modulus decrease after water absorption. When PHR content is low, the RHP particles are well distributed and the interface of RHP and PP is smooth. When PHR content is higher, the RHP particles tend to agglomerate, leading to poorer interface and lower mechanical properties, the composite failed with brittle fracture.


Author(s):  
Mohd Shahneel Saharudin ◽  
Rasheed Atif ◽  
Fawad Inam

The influence of short term water absorption on the mechanical properties of halloysite nanotubes-multi layer graphene reinforced polyester hybrid nanocomposites has been investigated. The addition of nano-fillers significantly increased the flexural strength; tensile strength and impact strength in dry and wet conditions. After short term water exposure; the maximum microhardness; tensile; flexural and impact toughness values were observed at 0.1 wt% MLG. The microhardness increased up to 50.3%; tensile strength increased up to 40% and flexural strength increased up to 44%. Compared to dry samples; the fracture toughness and surface roughness of all types of produced nanocomposites were increased that may be attributed to plasticization effect. Scanning electron microscopy revealed that the main failure mechanism is caused by the weakening of nano-filler-matrix interface induced by water absorption. It was further observed that synergistic effects were not effective at concentration of 0.1 wt% to produce considerable improvement in mechanical properties of produced hybrid nanocomposites.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 789-804
Author(s):  
Qiang Jin ◽  
Lin Zhu ◽  
Jiedeerbieke Madiniyeti ◽  
Chunxia He ◽  
Li Li

Hydration-active steel slag and slag micropowder were used as inorganic fillers with silane coupling agent (KH550) to prepare wheat straw/polyvinyl chloride wood-plastic composites (WPCs) by extrusion molding. A 35-day immersion and a pre-immersion test were carried out to analyze the influence of steel slag and slag micropowder on the physical and mechanical properties of the WPCs under wet conditions. Results showed the following: (1) KH-550 exhibited a good surface modification effect on the activated steel slag and slag micropowder, (2) an increase in the activated steel slag and slag micropowder content could effectively reduce the percent water absorption of the WPCs by 20% to 25% and the expansion by 20% to 24%, respectively, compared with the control group, but had a limited effect on the tensile strength retention, and (3) pre-immersion could effectively induce the synergistic reinforcement effect of the active fillers, resulting in reaching the saturated water absorption within 20 days. The water absorption and tensile strength were respectively 18% to 25% lower and 1.5% to 3% higher than those of the composites without pre-immersion. The results of this study could provide experimental data and theoretical references for the influence of hydration-active inorganic fillers on WPC properties.


Author(s):  
Mahmood F. Ahmed ◽  
Wasan I. Khalil ◽  
Qais J. Frayyeh

Recently, sustainability and ecological related problems have attracted more attention around the world. The construction sector incorporates directly and indirectly in global warming, natural resources depletion, and environmental pollution. This study aims, firstly; to identify the optimum mix of metakaolin (MK) geopolymer concrete required to achieve high compressive strength with respect to the concentration of the alkaline solution and curing system. Secondly, to reduce the impact of brick waste on the environment, by producing geopolymer concrete based on blended MK and waste clay brick powder (WBP). The compressive strength, splitting tensile strength and flexural strength of MK-based geopolymer concrete specimens were studied. Different contents of waste clay brick powder (WBP) (0%, 10%, 15%, and 20%) as a replacement by weight of (MK) were investigated. The results appear that it is possible to produce MK-based geopolymer concrete with a compressive strength of 44.03 MPa, while it was 34.76 MPa at 28 days for specimens with 15% WBP replacement of main source binder. Finally, it could be concluded that green moderate strength geopolymer concrete can be produced and used in different civil engineering applications.


Sign in / Sign up

Export Citation Format

Share Document