scholarly journals Construction Field Monitoring of a COB Prototype Building

Author(s):  
Athmane Azil ◽  
Malo Le Guern ◽  
Karim Touati ◽  
Moussa Gomina ◽  
Nassim Sebaibi ◽  
...  

Cob is an earthen building material made by soil, fibres and water used for millennia. However, cob construction disappeared out during the nineteenth century. These last years, it is experiencing a renaissance in Northwestern France and Southern England. Due to a limited technical knowledge, the investigation of engineering properties is important for modern design practice and code requirements. Moreover, to ensure building properties, it is necessary to have same quality mix along the building phases. The aim of this study is to determine material variation during the monitoring of a cob prototype building in Normandy (France). This study investigated structural cob mix composition, water content, density, mechanical properties and thermal conductivity. Specimens shape used were cylindrical 110 x H220 mm and prismatic 300 x 300 x 70 mm. Results indicated a variation in cob mix (water content, materials proportions) between three different lifts. These variations lead to different densities and, consequently, to variables compressive strengths: 0.99 to 1.38 MPa and thermal conductivities from 0.610 - 0.816 W.m-1∙K-1.

2015 ◽  
Vol 61 (4) ◽  
pp. 47-58 ◽  
Author(s):  
A. Pękala

The transitional siliceous rocks from the Belchatow lignite deposit belong to the deposits with heterogeneous petrographic composition. The research allows us to identify among others, opoka-rocks and gaizes. The mineralogical-chemical analysis proves that the main ingredients of the studied rocks commonly used as building material are minerals of the SiO2 group. Laboratory tests show that the nature of siliceous mineral phases has several effects on the geomechanical parameters of the studied transitional rocks. They are a reduction in water content and rock porosity, which leads to the transition of opal type A to opal type crystobalit and trydymit and then to quartz or microquartz. Their density and strength parameters are increased.


2014 ◽  
Vol 955-959 ◽  
pp. 2809-2812
Author(s):  
Zhang Hong ◽  
Guo Chao ◽  
Li Liang ◽  
Zhi Qiang Liu

Aimed at the common problems of small backfill space, hard to backfill, difficult to guarantee compaction quality in engineering, development law of fluidity and mechanical properties (unconfined compressive strength and cleavage strength) is analyzed by changing mix ratio of cement, fly ash and water. Fluidity is mainly controlled by water content. Range of fluidity is significantly different when water content is around 60%.Considering the effect of economy and strength, 4% cement content will be recommended.


2018 ◽  
Vol 2018 (1) ◽  
pp. 41-43
Author(s):  
Takashi Fukue ◽  
Hirotoshi Terao ◽  
Koichi Hirose ◽  
Tomoko Wauke ◽  
Hisashi Hoshino ◽  
...  

2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract 850.0 ALUMINUM Alloy can be considered the general purpose light metal bearing alloy. Its good thermal conductivity keeps operating temperatures low. It has high ductility. In many applications it has been found to be superior to steel backed bearings. 852.0 ALUMINUM Alloy has higher mechanical properties making it suitable for heavier load and higher temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Al-290. Producer or source: Federated Bronze Products Inc..


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


Sign in / Sign up

Export Citation Format

Share Document