In Vitro Biocompatibility Evaluations of Four Dental Ceramics

2008 ◽  
Vol 368-372 ◽  
pp. 1261-1263
Author(s):  
Hua Wei He ◽  
Bo Li ◽  
Guang Da Li ◽  
Zhi Xiu He ◽  
Zhi Qing Chen

This study sought to compare the biocompatibility of four dental ceramics so as to provide indications useful for the further development of dental materials. Osteoblasts were obtained by culturing the cranial explant of SD rat and cultured in vitro when they were seeded onto four different materials: hydroxyapatite, bioactive glass ceramics, tricalciumphosphate-hydroxyapatite and nano-hydroxyapatite (nHA). The phase contrast microscope and scanning electron microscope were used to evaluate the cell morphology and attachment. The content of alkaline phosphatase was calculated by molecular biological methods. MTT method was performed to find the alteration of proliferation. Then by use of wash way method, the adhesion ability was tested. The results showed that all of the four bioceramics had good cytocompatibility. There were significant differences among them on the levels of cell growth, differation and adhesion in vitro. The biocompatibility of nHA is the best and of conventional HA is the worst.

2021 ◽  
Author(s):  
Yan Tu ◽  
Xiaolong Lin ◽  
Yuan Wang ◽  
Shuli Deng

Abstract This study provides a basis for selecting dental materials and lays a foundation for developing new dental materials. Four dental restorative materials were divided into two groups: Streptococcus mutans and Actinomyces viscosus, five root canal sealing materials were divided into two groups: Porphyromonas gingivalis and Enterococcus faecalis. Each material block was immersed in the corresponding group of the bacterial solution and cultured under anaerobic conditions at 37°C for 2, 4, 6, 8, 12, 16, 20, and 24 h. The adhesion of bacteria was observed, the number of different bacteria adhering to various material model disks was calculated at different time intervals under a scanning electron microscope. 24 hours later, the number of Streptococcus mutans and Actinomyces viscosus that adhered to the surface of the resin and the zinc phosphate cement material disks was the maximum. The number of Porphyromonas gingivalis and Enterococcus faecalis adhering to the surface of the AH Plus sealer block was the maximum. Streptococcus mutans and Actinomyces viscosus exhibited the strongest adhesion ability to the resin and the zinc phosphate cement material block. Porphyromonas gingivalis and Enterococcus faecalis showed the highest adhesion ability to the AH Plus sealer block.


2018 ◽  
Vol 912 ◽  
pp. 170-174
Author(s):  
Roberto de Oliveira Magnago ◽  
Carlos Eduardo de Lima Abreu ◽  
Ronaldo Reis Silva ◽  
Manuel Fellipe Rodrigues Pais Alves ◽  
Caio Marcelo Felbinger Azevedo Cossu ◽  
...  

In this work three dental ceramics were characterized according to ISO 6872: yttria-stabilized zirconia (ZrO2-Y2O3), lithium disilicate (Li2Si2O5) and the spinel-zirconia composite (MgAl2O4-ZrO2). The zirconia ceramic and the zirconia-spinel composite were sintered at 1600°C-2h, while the lithium disilicate was thermally treated at 820°C-20min. These materials were characterized by relative density, X-ray diffraction, scanning electron microscopy, hardness, fracture toughness, chemical solubility and cytotoxicity. The XRD results showed for the stabilized zirconia only the tetragonal phase of ZrO2, and to the composite only the phase MgAl2O4, Li2Si2O5 was the only phase to lithium disilicate. Relative density results showed that the zirconia and the lithium disilicate showed high densification (> 99.5%) and the composite had a relative density of 75% (10% composite doped with ZrO2) and 90% (50% doped with ZrO2). Hardness and toughness showed 450HV and 3.2MPa.m1/2 to ZrO2-MgAl2O4 composites, 525HV and 1.8MPam1/2 to lithium disilicate and 1280HV and 8.0MPa.m1/2 to zirconia. The materials evaluated showed chemical solubility <30μg/cm2 and the results of cytotoxicity tests indicated cell viability of the samples near 100% for all the materials, showing good chemical stability and potential for dental applications.


2018 ◽  
Vol 23 (3) ◽  
pp. 106
Author(s):  
Rul Afiyah Syarif ◽  
Mustofa Mustofa ◽  
Ngatidjan Ngatidjan ◽  
Mae Sri Hartati Wahyuningsih

Previous research revealed that the extracts and fractions of Tithonia diversifolia (Hemsley) A.Gray leaves had antiplasmodial activity in vitro. For further development as an antiplasmodial agent, the mechanisms of action and safety of compounds are important to disclose. Heme polymerization inhibition is one of the main targets of antiplasmodial action. The aim of the study was to investigate the activity of T. diversifolia fractions in inhibiting heme polymerization and its cytotoxic effect on Vero cells. Heme polymerization inhibition assay from Bassilico and cytotoxic test on Vero cell using MTT method were conducted for three fractions (F5, F6, and F7) of T. diversifolia leaves. The inhibitory activity of heme polymerization expressed as IC50 and cytotoxicity effect expressed as CC50 were determined by probit analysis. The best heme polymerization inhibition activity was F5 with IC50 = 162.20 ± 57.81 μg/mL followed by F6 and F7 with IC50 216.30 ± 26.56 and 231.54 ± 44.26 μg/mL respectively. All the fractions had a low cytotoxic effect with CC50 for F5, F6, and F7 were over than 100, 34.81 ± 9.94 and 56.26 ± 6.73 μg/mL, respectively and the toxicity index fraction is below 10 or categorized as low selectivity. Conclusion: The fraction of T. diversifolia inhibited heme polymerization in vitro and had low cytotoxic effect on Vero cells but no selective toxicity. Further research using pure compounds may improve its selectivity.


Author(s):  
R Doeker ◽  
M Gutberlet ◽  
GP Meyer ◽  
R Noeske ◽  
R Felix ◽  
...  
Keyword(s):  

Author(s):  
Ya-Nan Li ◽  
Ni Ning ◽  
Lei Song ◽  
Yun Geng ◽  
Jun-Ting Fan ◽  
...  

Background: Deoxypodophyllotoxin, isolated from theTraditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant antitumor activity with strong toxicity in vitro and in vivo. Objective: In this article, we synthesized a series of deoxypodophyllotoxin derivatives, and evaluated their antitumor effectiveness.Methods:The anti tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. Results: The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29 andMG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. Conclusion: The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.


2020 ◽  
Vol 2 (1) ◽  
pp. 4-11
Author(s):  
Marcia Borba ◽  
Paula Benetti ◽  
Giordana P. Furini ◽  
Kátia R. Weber ◽  
Tábata M. da Silva

Background: The use of zirconia-based ceramics to produce monolithic restorations has increased due to improvements in the optical properties of the materials. Traditionally, zirconiabased ceramics were veneered with porcelain or glass-ceramic and were not directly exposed to the oral environment. Therefore, there are several doubts regarding the wear of the monolithic zirconia restoration and their antagonists. Additionally, different surface treatments are recommended to promote a smooth surface, including glaze and several polishing protocols. To support the correct clinical application, it is important to understand the advantages and limitations of each surface treatment. Objective: The aim of this short literature review is to investigate the factors that may affect the wear of monolithic zirconia restorations in service and their antagonists. Methods: Pubmed/Medline database was accessed to review the literature from a 10-year period using the keywords: zirconia, monolithic, prosthesis, wear. Both clinical and in vitro studies were included in the review. Results: Studies investigated the effect of several surface treatments, including grinding with diamond- burs, polishing and glazing, on the surface roughness, phase transformation and wear capacity of monolithic zirconia. The wear behavior of monolithic zirconia was frequently compared to the wear behavior of other ceramics, such as feldspathic porcelain, lithium disilicate-based glassceramic and leucite-reinforced glass-ceramic. Human tooth, ceramics and resin composites were used as antagonist in the investigations. Only short-term clinical studies are available (up to 2 years). Conclusion: Literature findings suggest that zirconia monolithic restorations are wear resistant and unlikely to cause excessive wear to the antagonist, especially when compared to feldspathic porcelain and glass-ceramics. Monolithic zirconia should be polished rather than glazed. Yet, none of the polishing systems studied was able to completely restore the initial surface conditions of zirconia after being adjusted with burs. More clinical evidence of the antagonist tooth wear potential of monolithic zirconia is needed.


2021 ◽  
Vol 22 (14) ◽  
pp. 7497
Author(s):  
Elena Chugunova ◽  
Gabriele Micheletti ◽  
Dario Telese ◽  
Carla Boga ◽  
Daut Islamov ◽  
...  

A series of novel hybrid compounds containing benzofuroxan and 2-aminothiazole moieties are synthesized via aromatic nucleophilic substitution reaction. Possible reaction pathways have been considered quantum-chemically, which allowed us to suggest the most probable products. The quantum chemical results have been proved by X-ray data on one compound belonging to the synthesized series. It was shown that the introduction of substituents to both the thiazole and amine moieties of the compounds under study strongly influences their UV/Vis spectra. Initial substances and obtained hybrid compounds have been tested in vitro as anticancer agents. Target compounds showed selectivity towards M-HeLa tumor cell lines and were found to be more active than starting benzofuroxan and aminothiazoles. Furthermore, they are considerably less toxic to normal liver cells compared to Тamoxifen. The mechanism of action of the studied compounds can be associated with the induction of apoptosis, which proceeds along the mitochondrial pathway. Thus, new hybrids of benzofuroxan are promising candidates for further development as anticancer agents.


Author(s):  
Teresa D. Rebaza-Cardenas ◽  
Kenneth Silva-Cajaleón ◽  
Carlos Sabater ◽  
Susana Delgado ◽  
Nilda D. Montes-Villanueva ◽  
...  

AbstractIn this work, two Peruvian beverages “Masato de Yuca,” typical of the Amazonian communities made from cassava (Manihot esculenta), and “Chicha de Siete Semillas,” made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.


1987 ◽  
Vol 14 (3) ◽  
pp. 166-167
Author(s):  
D. Arenholt-Bindslev ◽  
P. Hørsted-Bindslev ◽  
H.P. Philipsen

The aim of the present study was to compare the toxicity in vitro with the toxicity in vivo of two commercial chemicals marketed for use in the oral cavity (GLUMA BondR and 3M Etching LiquidR). Confluent cultures of human buccal epithelial cells were exposed to graded concentrations of GLUMA Bond or 3M Etching Liquid for 5 minutes. The cytotoxic effects induced by this treatment were observed (cytomorphology, proliferation rate). In vivo, monkey buccal epithelium was exposed to GLUMA Bond or 3M Etching Liquid for 5 minutes. Biopsies were taken after 24 hours, and the buccal epithelium processed for light microscopical examination. In both models, the toxic reactions to GLUMA Bond were far more extensive than those caused by 3M Etching Liquid.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Katalin Magyar-Tábori ◽  
Nóra Mendler-Drienyovszki ◽  
Alexandra Hanász ◽  
László Zsombik ◽  
Judit Dobránszki

In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.


Sign in / Sign up

Export Citation Format

Share Document