Hot-Pressed Translucent Aluminum Oxynitride (AlON) Ceramics

2008 ◽  
Vol 368-372 ◽  
pp. 450-452 ◽  
Author(s):  
Jun Ming Xue ◽  
Qian Liu ◽  
Tong Ping Xiu ◽  
Li Li Ma ◽  
Ming Fang ◽  
...  

AlON with a composition of Al23O27N5 was prepared by hot pressing at temperatures lower than 1900 °C. The microstructures and final properties, including both mechanical properties and optical properties, of the sintered specimens were studied. The results showed that sintering temperature had a great influence on the densification of specimens and could lead to very different properties, especially the optical transmittance and the maximum infrared transmission.

2012 ◽  
Vol 512-515 ◽  
pp. 377-381 ◽  
Author(s):  
Jin Rong Lu ◽  
Yang Zhou ◽  
Yong Zheng ◽  
Shi Bo Li ◽  
Zhen Ying Huang ◽  
...  

In this paper, a new type of Ti3SiC2/Cu composites with the volume fractions of 30% Ti3SiC2 particle was prepared by hot pressing and vacuum sintering respectively. The effects of sintering temperature and holding time on the density, resistance and Vickers hardness of Cu-30vol%Ti3SiC2 composite were investigated. The results show that the mechanical properties of the composites prepared by hot pressing are better than that prepared by vacuum sintering. The relative densities of Cu-30vol% Ti3SiC2 composites are rather high in suitable sintering conditions. It achieved 100% for the composites prepared by hot pressing at 930°C for 2h, and 98.4% for the composites prepared by vacuum sintering at 1250°C for 1h. At the same time, the maximum Vickers hardness reached 1735MPa at 900°C by hot pressing. The resistance and Vickers hardness of the composites decreased with an increase in sintering temperature, whereas the density increased. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) were used to observe the microstructure of the composites. The relationship between microstructure and mechanical properties was discussed.


2016 ◽  
Vol 697 ◽  
pp. 7-11 ◽  
Author(s):  
Shen Qi ◽  
Xiao Jian Mao ◽  
Bao Yan Chai ◽  
Long Zhang

Transparent aluminum oxynitride (AlON) ceramics have been prepared through a method based on direct reaction sintering of alumina and aluminum nitride powders using MgO and Y2O3 as co-additives. The sintering additives could cause the formation of liquid phase during sintering, which would greatly promote the densification and eliminate pores. The grain size of AlON is about 50-100μm. The influence of different component of Al2O3 and AlN as well as sintering temperature on microstructure and optical properties of AlON have been studied. High transparent AlON ceramics with the in-line transmittance of 80.3% at 2000 nm wavelength have been prepared when the concentration of sintering additives was 0.16wt% Y2O3 and 0.02wt% MgO.


2011 ◽  
Vol 52-54 ◽  
pp. 2197-2202 ◽  
Author(s):  
Darwin Sebayang ◽  
Deni S. Khaerudini ◽  
Hendi Saryanto ◽  
M.A. Othman ◽  
Mat Husin Saleh ◽  
...  

This paper investigates the efficiency of two consolidation processing techniques prepared by spark plasma sintering (SPS) and hot pressing (HP) which allow obtaining fully dense nanostructured materials. FeCr powders were sintered by using spark plasma sintering (SPS) and hot pressing (HP) sintering techniques over sintering temperature up to 1000oC. The microstructures of the sintered end-products were characterized by Scanning Electron Microscopy (SEM). X-rays diffraction line profile analysis was adopted to analyze the crystallite size of starting and sintered FeCr using Williamson–Hall method. The density of the sintered specimens was measured by using the Archimedes method. The result indicated that the dense specimen with relative similar density and approaching the equilibrium state obtained in shorter time and lower sintering temperature by spark plasma sintering compared to conventional hot pressing. The FeCr specimen prepared by SPS showed more effective to retain nanocrystalline and better mechanical properties than those prepared by HP. The diffraction investigation revealed that the grain growth was not significant in SPS process compared to HP, which would enhance the mechanical properties of the SPS sintered FeCr.


2011 ◽  
Vol 675-677 ◽  
pp. 427-430 ◽  
Author(s):  
Jin Hua Jiang ◽  
Ze Xing Wang ◽  
Nan Liang Chen

In the past decade, natural fibre composites with thermoplastic matrices had attracted many composites manufactures for the superiority of lightweight and low-cost. A major challenge for natural fibre composites was to achieve high mechanical performance at a competitive price. Composites constructed from yarn and fabric structure preforms were better than composites made from random nonwoven mats. However, the twist structure of conventional ring spun yarns prevented the full utilization of fibre mechanical properties in the final composites. In this paper, the wrapped yarns were produced by wrap spun method with flax and polypropylene (PP), in which all flax fibres were twistless, then woven to be fabric preforms. The PP fibres served as a carrier for flax fibres during processing and became the polymer matrix in the final composites. The homogenous distribution of fibre and thermoplastic matrix in preforms could be achieved before hot pressing, so that not lead to impregnate difficultly, and prevented damage to the reinforced nature fibres during processing. Composites made from the wrapped yarn demonstrated significant tensile and peeling properties. The fabric structures (include plain, twill, and basket weave) and yarn tensile orientation (in 0°, 90°, 45°), had great influence on tensile strength and elongation of preforms. The cavity thickness of hot pressing mould had different influence on the tensile strength and peeling strength of thermoplastic composites, and the mechanical properties were superior when the thickness was 0.8-1.2 mm. The microstructure of thermoplastic composites showed uniform infiltration between layers, and had good bonding interface between flax fibre and PP matrix in composites.


2007 ◽  
Vol 336-338 ◽  
pp. 1221-1224
Author(s):  
Yang Zhou ◽  
Hong Xiang Zhai ◽  
Li Qiang Gao ◽  
Ming Xing Ai ◽  
Zhen Ying Huang ◽  
...  

Polycrystalline bulk samples of ternary carbide Ti3AlC2 ceramics were fabricated by reactively hot-pressing a mixture of Ti, Al, and graphite powders with and without Sn additive. The effects of sintering temperature, time and addition of Sn on the purity, mechanical properties and microstructure of Ti3AlC2 were investigated. The result showed that the TiC content was strongly influenced by sintering temperature for the Ti3AlC2 samples without Sn additive, and the most suitable sintering temperature to create the lowest TiC content was 1400°C. The addition of Sn additive led to a distinct decrease in TiC content. The flexural strength of the testing materials had close relation with the TiC content and sintering time. A certain content of TiC second phase and longer sintering time were helpful to improving the flexural strength. The sample sintered at 1400°C for 2 h possessed the highest flexural strength.


2013 ◽  
Vol 634-638 ◽  
pp. 2411-2418
Author(s):  
Ru Yin Song ◽  
Hong Wu Yang ◽  
Jun De Yang

The sintering parameters of hot-pressing diamond drill bit mainly contains the sintering temperature, holding time, sintering pressure and the pressurized method. The length of holding time is directly related to the performance of diamond drill bit. This article mainly discusses the effect of holding time on the performance of diamond drill bit. First, a general formula of diamond drill bit is chosen. A group of samples in this parameter were loaded and sintered. Holding time is set as variable, while other parameters remain the same. The optimal holding time for this formula is obtained through the mechanical properties tests on the samples’ bending, tension, compression, and hardness, and fracture analysis using scanning electron microscopy (SEM).


2007 ◽  
Vol 353-358 ◽  
pp. 1489-1492
Author(s):  
Shao Ming Dong ◽  
Yu Sheng Ding ◽  
Qing Zhou ◽  
Akira Kohyama

SiC/SiC composites were fabricated by hot pressing (HP) via liquid phase sintering (LPS) using carbon coated 2D woven Tyranno SA fabrics as reinforcement. Both nano-SiC and micro-SiC powders with sintering additives were used for matrix. The effects of preparation conditions on the microstructure and mechanical properties of the composites were characterized. Highly densified composite was obtained at 1780°C under 20MPa with nano-SiC particles. The strength and elastic modulus of the composite were enhanced. When micro-SiC powder was used, higher strength revealed for the composite sintered at 1780°C under 15MPa, although it was not densified enough. Higher sintering temperature (1800°C) is beneficial for the densification of the composite, but is not obvious for the improvement of mechanical properties.


Materials ◽  
2016 ◽  
Vol 9 (11) ◽  
pp. 919 ◽  
Author(s):  
Cristina Arévalo ◽  
Isabel Montealegre-Meléndez ◽  
Enrique Ariza ◽  
Michael Kitzmantel ◽  
Cristina Rubio-Escudero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document