Study on Performance and Blending Techniques of Corn Fibers

2011 ◽  
Vol 480-481 ◽  
pp. 21-25
Author(s):  
Mei Li

Corn fiber is a polymeric fiber made from corn as the raw material. Wide applications have been found for corn fibers in recent years and many progresses on the study of corn fibers have been made as well. The performance of corn fiber is determined by the molecular weight of polylactic acid. Corn fibers have some professional properties, such as high transparency, well-heat-resistant stability, well-coloring, and full biodegradability, as well as the feature in ecological recycle. These means the corn fibers are new-typical and green, full-environmental fibers. The corn fibers can be blended with other fibrin fibers with good hygroscopic to get products of high-performance and low in price. The blending techniques of corn fibers with color cotton fibers and corn fibers with Richcel and lambsdown are studied and developed in this paper and good social and economical benefits have been achieved.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3378
Author(s):  
Yanhong Jin ◽  
Jiaxian Lin ◽  
Yu Cheng ◽  
Chunhong Lu

As a major component of lignocellulosic biomass, lignin is one of the largest natural resources of biopolymers and, thus, an abundant and renewable raw material for products, such as high-performance fibers for industrial applications. Direct conversion of lignin has long been investigated, but the fiber spinning process for lignin is difficult and the obtained fibers exhibit unsatisfactory mechanical performance mainly due to the amorphous chemical structure, low molecular weight of lignin, and broad molecular weight distribution. Therefore, different textile spinning techniques, modifications of lignin, and incorporation of lignin into polymers have been and are being developed to increase lignin’s spinnability and compatibility with existing materials to yield fibers with better mechanical performance. This review presents the latest advances in the textile fabrication techniques, modified lignin-based high-performance fibers, and their potential in the enhancement of the mechanical performance.


2013 ◽  
Vol 456 ◽  
pp. 525-528
Author(s):  
Meng Yan Yin ◽  
Rong Jie Yang ◽  
Ding Hua Li

The polylactic acid (PLA) was prepared by direct melt polycondensation using lactic acid aqueous solution as raw material. Considering of the difficulty to rule out small molecules of water, magnesium or magnesium methoxide which could react with water were used as dehydrant and added in the PLA polycondensation, respectively. The determination of moisture, GPC and DSC results showed that both the magnesium and magnesium methoxide are effective in dehydration, the molecular weight of final products PLA is significantly improved and the latter is better. Both of them have a good promoting effect on polycondensation reaction to get a higher molecular weight polylactic acid products. For the time of adding magnesium and magnesium methoxide, it is better to add in the late stage of polycondensation reaction rather than early stage. Furthermore, magnesium has a smaller influence on crystallization of PLA, whereas the crystallinity of PLA is greatly reduced after adding magnesium methoxide.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Author(s):  
Firmansyah A. ◽  
Winingsih W. ◽  
Soebara Y S

Analysis of natural product remain challenging issues for analytical chemist, since natural products are complicated system of mixture. The most popular methods of choice used for quality control of raw material and finished product are high performance liquid chromatography (HPLC), gas chromatography (GC) and mass spectrometry (MS). The utilization of FTIR-ATR (Fourier Transform Infrared-Attenuated Total Reflectance) method in natural product analysis is still limited. This study attempts to expand the use of FTIR spectroscopy in authenticating Indonesian coffee powder.The coffee samples studied were taken from nine regions in Indonesia, namely Aceh Gayo, Flores, Kintamani, Mandheling, Papua, Sidikalang, Toraja, Kerinci and Lampung.The samples in the form of coffee bean from various regions were powdered . The next step conducted was to determine the spectrum using the FTIR-ATR (Attenuated Total Reflectance) using ZnSe crystal of 8000 resolution. Spectrum samples, then, were analyzed using chemometrics. The utilized chemometric model was the principal component analysis (PCA) and cluster analysis (CA). Based on the chemometric analysis, there are similarities between Aceh Gayo coffee with Toraja coffee, Mandailing coffee, Kintamani coffee and Flores coffee. Sidikalang coffee has a similarity to Flores coffee; Papua coffee has a similarity to Sidikalang coffee; Lampung coffee has a similarity to Sidikalang coffee, while Kerinci coffee has a similarity to Papua coffee.


2019 ◽  
Vol 16 ◽  
Author(s):  
Joanna Wittckind Manoel ◽  
Camila Ferrazza Alves Giordani ◽  
Livia Maronesi Bueno ◽  
Sarah Chagas Campanharo ◽  
Elfrides Eva Sherman Schapoval ◽  
...  

Introduction: Impurity analysis is an important step in the quality control of pharmaceutical ingredients and final product. Impurities can arise from drug synthesis or excipients and even at small concentrations may affect product efficacy and safety. In this work two methods using high performance liquid chromatography (HPLC) were developed and validated for the evaluation of besifloxacin and its impurity synthesis, with isocratic elution and another with gradient elution. Method: The analysis by HPLC in isocratic elution mode was performed using a cyano column maintained at 25 °C. The mobile phase was composed by 0.5% triethylamine (pH 3.0): acetonitrile (88:12 v/v) eluted at a flow rate of 1.0 ml/min with detection at 330 nm. The gradient elution method was carried out with the same column and mobile phase components only modifying the rate between organic and aqueous phase during analysis. The procedures have been validated according to internationally accepted guidelines, observing results within acceptable limits. Results: The methods presented were found to be linear in the 140 to 260 µg/ml range for besifloxacin and 0.3 to 2.3 µg/ml for an impurity named A. The limits of detection and quantification were respectively 0.07 and 0.3 µg/ml for impurity A, with a 20 µL injection volume. The precision achieved for all analyses performed provided RSD inter-day equal to 6.47 and 6.36% for impurity A with isocratic elution and gradient, respectively. The accuracy was higher than 99% and robustness exhibited satisfactory results. In the isocratic method an analysis time of 25 min and 15 min was obtained for gradient. For impurity A, the number of theoretical plates in the isocratic mode was about 5000 while in the gradient mode it was about 45000, hence, it made the column more efficient by changing the mobile phase composition during elution. In besifloxacin raw material and in pharmaceutical product used in this study, other related impurities were present but but impurity A was searched for and not detected Conclusion: The proposed methods can be applied for quantitative determination of impurities in the analysis of the besifloxacin raw material, as well as in ophthalmic suspension of the drug, considering the quantitation limit.


1992 ◽  
Vol 57 (10) ◽  
pp. 2151-2156 ◽  
Author(s):  
Peter Chabreček ◽  
Ladislav Šoltés ◽  
Hynek Hradec ◽  
Jiří Filip ◽  
Eduard Orviský

Two methods for the preparation of high molecular weight [3H]hyaluronic acid were investigated. In the first one, hydrogen atoms in the molecule were replaced by tritium. This isotopic substitution was performed in aqueous solution using Pd/CaCO3 as the catalyst. In the second method, the high molecular weight hyaluronic acid was alkylated with [3H]methyl bromide in liquid ammonia at a temperature of -33.5 °C. High-performance gel permeation chromatographic separation method was used for the isolation and characterization of the high molecular weight [3H]hyaluronic acid. Molecular weight parameters for the labelled biopolymers were Mw = 128 kDa, Mw/Mn = 1.88 (first method) and Mw = 268 kDa, Mw/Mn = 1.55 (second method). The high molecular weight [3H]hyaluronic acid having Mw = 268 kDa was degraded further by specific hyaluronidase. Products of the enzymatic depolymerization were observed to be identical for both, labelled and cold biopolymer. This finding indicates that the described labelling procedure using [3H]methyl bromide does not induce any major structural rearrangements in the molecule.


2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Kyoung Kim ◽  
Sang Cheol Park ◽  
Geonha Park ◽  
Eunjung Choi ◽  
Yura Ji ◽  
...  

AbstractThe present study introduces a systematic approach using analytical quality by design (AQbD) methodology for the development of a qualified liquid chromatographic analytical method, which is a challenge in herbal medicinal products due to the intrinsic complex components of botanical sources. The ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS) technique for 11 flavonoids in Genkwa Flos was utilized through the entire analytical processes, from the risk assessment study to the factor screening test, and finally in method optimization employing central composite design (CCD). In this approach, column temperature and mobile solvent slope were found to be critical method parameters (CMPs) and each of the eleven flavonoid peaks’ resolution values were used as critical method attributes (CMAs) through data mining conversion formulas. An optimum chromatographic method in the design space was calculated by mathematical and response surface methodology (RSM). The established chromatographic condition is as follows: acetonitrile and 0.1% formic acid gradient elution (0–13 min, 10–45%; 13–13.5 min, 45–100%; 13.5–14 min, 100–10%; 14–15 min, 10% acetonitrile), column temperature 28℃, detection wavelength 335 nm, and flow rate 0.35 mL/min using C18 (50 × 2.1 mm, 1.7 μm) column. A validation study was also performed successfully for apigenin 7-O-glucuronide, apigenin, and genkwanin. A few important validation results were as follows: linearity over 0.999 coefficient of correlation, detection limit of 2.87–22.41, quantitation limit of 8.70–67.92, relative standard deviation of precision less than 0.22%, and accuracy between 100.13 and 102.49% for apigenin, genkwanin, and apigenin 7-O-glucuronide. In conclusion, the present design-based approach provide a systematic platform that can be effectively applied to ensure pharmaceutically qualified analytical data from complex natural products based botanical drug.


2021 ◽  
Vol 16 (1) ◽  
pp. 641-652
Author(s):  
Sławomir Franaszek ◽  
Bolesław Salmanowicz

Abstract The main purpose of this research was the identification and characterization of low-molecular-weight glutenin subunit (LMW-GS) composition in common wheat and the determination of the effect of these proteins on the rheological properties of dough. The use of capillary zone electrophoresis and reverse-phase high-performance liquid chromatography has made it possible to identify four alleles in the Glu-A3 and Glu-D3 loci and seven alleles in the Glu-B3 locus, encoding LMW-GSs in 70 varieties and breeding lines of wheat tested. To determine the technological quality of dough, analyses were performed at the microscale using a TA.XT Plus Texture Analyzer. Wheat varieties containing the Glu-3 loci scheme (Glu-A3b, Glu-A3f at the Glu-A3 locus; Glu-B3a, Glu-B3b, Glu-B3d, Glu-B3h at the Glu-B3 locus; Glu-D3a, Glu-D3c at the Glu-D3 locus) determined the most beneficial quality parameters.


Sign in / Sign up

Export Citation Format

Share Document