Mechanical Behavior of Self-Compacting Soil-Cement-Sisal Fiber Composites

2014 ◽  
Vol 634 ◽  
pp. 421-432 ◽  
Author(s):  
A.P.S. Martins ◽  
F.A. Silva ◽  
R.D. Toledo Filho

The aim of this research is the development and mechanical characterization of self-compacting soil cement composites with the incorporation of fly ash, metakaolin and sisal fibers. The mentioned composites, based on natural raw materials (raw earth and vegetable fibers), which are abundant in nature and have low cost and low environmental impact could be used as a more sustainable alternative than conventional industrialized materials for applications that don ́t require high structural performance (minimum strength equals to 2 MPa). A residual soil, constituted by 35% of fines and 65% of granular material was selected and the matrix was designed using a computational routine, based on the compressible packing model (CPM). The rheology of the matrix was adjusted by the slump flow test having as a target the spreading value of 600 mm. The matrix presented uniaxial compression strength of about 3.3 MPa after 28 days of curing. After 240 days of curing it was noticed an increase in the compressive strength to 7.5 MPa. This can be traced back to the pozzolanic reactions that takes place in the system. The soil cement composites were produced with three different sisal fiber contents: 0.5, 1.0 and 1.5% (in relation to the weight of dry soil) and a fiber length (Le) of 20 mm. Under compression, the incorporation of fibers has significantly influenced the post-peak behavior, increasing the toughness and the strain capacity. Under four point bending loading, the presence of fibers have contributed to increase the peak strength and the residual strength with expressive gains of toughness. The composites presented strength values as high as 1.8 MPa (1.0% of fibers) when they were subjected to bending loads. The use of sisal fibers as reinforcement modified the fracture mechanisms of the composites, changing it from a brittle to a ductile behavior.

TAPPI Journal ◽  
2012 ◽  
Vol 11 (9) ◽  
pp. 41-49 ◽  
Author(s):  
CRISTINA GOMES DA SILVA ◽  
FERNANDO OLIVEIRA ◽  
ELAINE CRISTINA RAMIRES ◽  
ALAIN CASTELLAN ◽  
ELISABETE FROLLINI

The replacement of phenol with sodium lignosulfonate and formaldehyde with glutaraldehyde in the preparation of resins resulted in a new resol-type phenolic resin, sodium lignosulfonate-glutaraldehyde resin, in addition to sodium lignosulfonate-formaldehyde and phenol-formaldehyde resins. These resins were then used to prepare thermosets and composites reinforced with sisal fibers. Different techniques were used to characterize raw materials and/or thermosets and composites, including inverse gas chromatography, thermogravimetric analysis, and mechanical impact and flexural tests. The substitution of phenol by sodium lignosulfonate in the formulation of the composite matrices increased the impact strength of the respective composites from approximately 400 Jm-1 to 800 J m-1 and 1000 J m-1, showing a considerable enhancement from the replacement of phenol with sodium lignosulfonate. The wettability of the sisal fibers increased when the resins were prepared from sodium lignosulfonate, generating composites in which the adhesion at the fiber-matrix interface was stronger and favored the transference of load from the matrix to the fiber during impact. Results suggested that the composites experienced a different mechanism of load transfer from the matrix to the fiber when a bending load was applied, compared to that experienced during impact. The thermogravimetric analysis results demonstrated that the thermal stability of the composites was not affected by the use of sodium lignosulfonate as a phenolic-type reagent during the preparation of the matrices.


2013 ◽  
Vol 821-822 ◽  
pp. 1271-1276
Author(s):  
Weerapol Namboonruang ◽  
Rattanakorn Rawangkul ◽  
Wanchai Yodsudjai ◽  
Nutthanan Suphadon ◽  
Anucha Boongurd ◽  
...  

This work presents a study on the investigation of recycled waste tyre (crumb rubber) as aggregate in the combination of local soil-cement brick. The purpose is to develop a lightweight brick with low thermal conductivity that can produce as low cost materials in local area of Thailand. The different amount of crumb rubber particles at 0, 10, 15, 20, 25, 30 and 40% were replaced to local Ratchaburi soil by weight and then mixed with a constant of Portland cement content at 10%. The mechanical properties were studied and indicated that a significant reduction in sample unit weight, there by resulting in a reduction of compressive strength and flexural strength. The results show that the presence of air voids and crumb rubber particles in the matrix can increase the water absorption but decrease the thermal conductivity. However, according to ASTM indicates that this hybrid material can be used as non-load bearing concrete masonry units (2.45 MPa) and is also suitable for construction as low cost and low energy consumption house in Thailand.


2015 ◽  
Vol 719-720 ◽  
pp. 50-54
Author(s):  
Andressa Cecília Milanese ◽  
Kelly Cristina Coelho de Carvalho Benini ◽  
Maria Odila Hilário Cioffi ◽  
Herman Jacobus Cornelis Voorwald

Nowadays, polymeric composites reinforced with natural fibers are being considered in the civil engineering area. The use of polymeric composites to reinforce degraded timber structures can improve its behavior. Fibers with larger structural applications are glass and carbon but the use of natural fibers is an economical alternative and posses many advantages such as biodegradability, low cost and is derived from natural and renewable sources. Epoxy composite reinforced with sisal fabric was processed by resin transfer molding (RTM) at room temperature and this work studies thermal behavior and its respective mechanism of thermal decomposition. Samples of sisal fiber, epoxy resin and sisal/epoxy composite were characterized by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Thermogravimetric curves showed that sisal fibers can be used in manufacturing process where the processing temperature does not exceed 177°C and shown that the epoxy resin has the greatest stability material followed by sisal/epoxy composite.


2020 ◽  
Vol 3 (4) ◽  
pp. 334-340
Author(s):  
Matheus Vinicius Falcão Moreira ◽  
Lorrane Carneiro Laranjeira Silva ◽  
Joyce Batista Azevedo ◽  
Pollyana da Silva Melo Cardoso ◽  
Josiane Dantas Viana Barbosa ◽  
...  

Fiber-reinforced composites represent 75% of the application of these materials in several industrial segments. It has the purpose of improving technical characteristics and reducing environmental impact through the use of sustainable raw materials such as natural fibers and other fibers from industrial waste. In this sense, the objective of this work was to study and compare the mechanical properties of polyester composites (PL) reinforced with natural sisal fiber and residues of polyethylene terephthalate (PET) synthetic fibers. Initially, we evaluated the moisture and morphology of the fibers. The composites with PL matrix were obtained and the fiber concentration varied by 1%, 3%, and 5% by weight. In the composites, the mechanical properties under flexion and impact resistance were evaluated. We concluded that the level of reinforcement with sisal fibers did not significantly affect the mechanical properties. However, the PET fiber provided significant improvements in the properties of the composite. Thus, the composites reinforced with PET fiber residue have advantages in the development of new material with sustainable characteristics.  


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2028 ◽  
Author(s):  
Adam Olszewski ◽  
Paulina Kosmela ◽  
Aleksandra Mielewczyk-Gryń ◽  
Łukasz Piszczyk

This article describes how new bio-based polyol during the liquefaction process can be obtained. Selected polyol was tested in the production of polyurethane resins. Moreover, this research describes the process of manufacturing polyurethane materials and the impact of two different types of fibers—synthetic and natural (glass and sisal fibers)—on the properties of composites. The best properties were achieved at a reaction temperature of 150 °C and a time of 6 h. The hydroxyl number of bio-based polyol was 475 mg KOH/g. Composites were obtained by hot pressing for 15 min at 100 °C and under a pressure of 10 MPa. Conducted researches show the improvement of flexural strength, impact strength, hardness, an increase of storage modulus of obtained materials, and an increase of glass transition temperature of hard segments with an increasing amount of fibers. SEM analysis determined better adhesion of sisal fiber to the matrix and presence of cracks, holes, and voids inside the structure of composites.


2020 ◽  
Vol 54 (30) ◽  
pp. 4841-4852 ◽  
Author(s):  
Douglas Lamounier Faria ◽  
Laércio Mesquita Júnior ◽  
Ana Angélica Resende ◽  
Daiane Erika Lopes ◽  
Lourival Marin Mendes ◽  
...  

Currently, the use of composites to replace parts made only with plastics has been gradually employed. The advantages of these composites are low cost, high availability of raw materials and good physical and mechanical properties. Thus, this work aimed at producing and characterizing composites produced with coconut fibre reinforced polyurethane matrices. The coconut fibres were studied as to their chemical constituents, aspect ratio, bulk density, pH, tensile properties, and surface SEM images. The composites were prepared using the hand lay-up process and four different concentrations of coconut fibre were evaluated: 30, 40, 50, and 60%. The composites were assessed as for water absorption after 20 days of immersion, bulk density, impact IZOD, tensile tests, and visualize the matrix-reinforcement interface using SEM. The electron micrographs showed a great deal of impurities on the surface of coconut fibres, such as greases, waxes, and gums, due to the high amount of extraction material (19.78%), which damages the adherence of the polymer onto the coconut fibre and, as observed, cause detachment between the reinforcement and the matrix. The tensile strength of the composites tended to increase as greater amounts of coconut fibres were added to the matrix. The averages were around 6.51 to 6.72 MPa for composites with 30 and 60% fibres, respectively. Therefore, coconut fibres can be considered as an alternative to synthetic fibres commonly used in composites, and they can be used at a ratio of 60% without prejudicing the properties of the composites, making them lighter and cheaper.


2014 ◽  
Vol 634 ◽  
pp. 410-420 ◽  
Author(s):  
Rogério de Jesus Santos ◽  
Paulo Roberto Lopes Lima

The dimensional instability of vegetable fibers due to hygroscopicity results in a gradual loss of adherence in cement based composites which, when in service, are submitted to a natural variation of humidity. Such an effect reduces the contribution of the fiber as a reinforcement and can cause the early rupture of the material. In this work, a treatment of the sisal fibers is performed with the applying of wetting-drying cycles in order to alter their crystalline structure and improve the dimensional stability of the fiber to withstand the variation of humidity: 6, 10, 20, 30 and 34 cycles were applied in order to evaluate the effect on the properties of fiber; a tensile test, the morphological characterization (MEV) and the evaluation of the chemical structure of fiber were carried out. The effect of the treatment on fiber-matrix behavior was evaluated using the pull-out test. Embedded lengths of 16, 20, 30, 40 and 44 mm were defined through a factorial design and used in the test. It is verified that the use of 10 wetting-drying cycles causes less damage to the tensile strength and the elastic modulus of the fiber and contributes to a better adherence with the matrix, with an increase of up to 23 % compared with the untreated fiber. The statistical analysis of the interaction effect between the studied factors, using 2K factorial design with central composite design, indicates that the number of cycles can be decreased when using a longer length of the embedded fiber.Keywords: wetting-drying cycles, pull out test, tensile strength..


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3917
Author(s):  
Krystian Brasse ◽  
Tomasz Tracz ◽  
Tomasz Zdeb

The paper deals with mechanical properties of soil-cement composites made with non-cohesive soil and reinforced with dispersed fibers. The research was carried out on the basis of three soil-cement matrices whose compositions varied in terms of the volumetric fraction of cement paste and the water-cement ratio. Two types of polypropylene fibers were used as dispersed reinforcement: single fibrillated-tapes polypropylene fibers (SFPF) and bundles of coiled fibrillated-tapes polypropylene fibers (BCFPF). The fibers varied in terms of their length and mass fraction. The objective of the study was to assess the effect of the addition of fibers to soil-cement composites on their flexural tensile strength and on their behavior in the post-critical state. The studies were carried out after 28 days of curing. Bending tests were carried out to determine post-critical stress values σCMODi, stress values at which the matrix is destroyed (limit of proportionality) σLOP, maximum stress values transferred by the fibers σMOR (modulus of rupture), and total fracture energy Gf,tot as well as compressive strength. The test results obtained, and their analysis, indicate the significant impact of the dispersed reinforcement used on the performance of such composites during bending.


Author(s):  
Edgars Kirilovs ◽  
Rita Soliženko ◽  
Silvija Kukle

In the report there are reflected research results of new board type biocomposites creation for furniture and equipment manufacturing for public segment, replacing traditional petroleum-based components with fully or partly renewable, biodegradable raw materials as one of the major global environmental problems today is non-renewable resource depletion and waste of petroleum-based plastic products. Performed research of biopolymer composites development shows that they are cheaper, environmentally friendlier, lighter, more easily to recycle and to dispose at the end of the product life cycle. For biopolymer’s reinforcement industrial flax and hemp fibers in terms of mechanical qualities are competitive with the glass fiber, they are strong enough in many applications, CO2 neutral, have a relatively low cost, low production energy requirements. By creating new biocomposites it is taken into account that the designed material mechanical properties are mainly dependent on the fiber mass in the matrix, orientation and adhesion to the matrix material. The maximum theoretical amount of fiber weight in composite can reach 91%, specific weight of the fiber component used in practice is usually between 45-65%, but can reach also 70%. For improvement of the adhesion the chemical treatment and drying of the fibers need to be done, also adjuvants that promote development of the hydroxyl group links should be incorporated in the matrix.


Jurnal Fisika ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 11-18
Author(s):  
Amirin Kusmiran ◽  
Rita Desiasni

The mechanical properties of natural fibers are continuous development as the alternatively synthetic fibers because of the natural fibers are non-corrosive, lightweight, and environmental advantages. However, these fibers have poor interfacial adhesion properties as the fibers if used as bio-composite material. This problem can be solved by the surface modification method by the sodium hydroxide treatment used to improve the mechanical properties. A sodium hydroxide concentration which it used at 0 wt%, 5 wt%, 10 wt%, and 15 wt% and the sisal fibers were soaked in that a concentration for 2 hours. Furthermore, the bio-composite fabrication is conducted by hand lay-up technique which is using both sisals as the fibers and epoxy resin as the matrix. The tensile test RTG-1250 results show that the maximum mechanical properties, such as strains, Young's modulus, and elongation, was obtained at sodium hydroxide 5 wt% than others where the values of these mechanical properties were 25.334 MPa, 16.111 GPa, and 1.572%, respectively. The morphological evaluation carried out using a scanning electron microscope showed that the alkali sodium hydroxide treatment was improved interfacial adhesion between fiber and matrix. Finally, sodium hydroxide alkali treatment of more than 5% can be able to sisal fiber cracks so that the mechanical properties of bio-composite can decrease continuously.


Sign in / Sign up

Export Citation Format

Share Document